• java 基础--8 种基本数据类型:整型、浮点型、布尔型、字符型 整型中 byte、short、int、long 的取值范围 什么是浮点型?什么是单精度和双精度?为什么不能用浮点型表示金额?


     一、8种基本数据类型(4整,2浮,1符,1布):

        整型:byte(最小的数据类型)、short(短整型)、int(整型)、long(长整型);

        浮点型:float(浮点型)、double(双精度浮点型);

        字符型:char(字符型);

        布尔型:boolean(布尔型)。

    二、整型中 byte、short、int、long 取值范围

        byte:一个字节有8位,去掉符号位还有7位,正数为避免进位还要减1,因此byte的取值范围为:-2^7 ~ (2^7-1),也就是 -128~127 之间。

        short:short用16位存储,去掉符号位还有15位,正数为避免进位还要减1,因此short的取值范围是:-2^15 ~ (2^15-1)。

        int:整型用32位存储,去掉符号位还有31位,正数为避免进位还要减1,因此整型的取值范围是 -2^31 ~ (2^31-1)。

        long:长整型用64位存储,去掉符号位还有63位,正数为避免进位还要减1,因此长整型的取值范围是 -2^63 ~ (2^63-1)。

    三:浮点型数据

       浮点类型是指用于表示小数的数据类型。

    单精度和双精度的区别

        单精度浮点型float,用32位存储,1位为符号位, 指数8位, 尾数23位,即:float的精度是23位,能精确表达23位的数,超过就被截取。

        双精度浮点型double,用64位存储,1位符号位,11位指数,52位尾数,即:double的精度是52位,能精确表达52位的数,超过就被截取。

        双精度类型double比单精度类型float具有更高的精度,和更大的表示范围,常常用于科学计算等高精度场合。

       浮点数与小数的区别:

        1)在赋值或者存储中浮点类型的精度有限,float是23位,double是52位。

        2)在计算机实际处理和运算过程中,浮点数本质上是以二进制形式存在的。

        3)二进制所能表示的两个相邻的浮点值之间存在一定的间隙,浮点值越大,这个间隙也会越大。如果此时对较大的浮点数进行操作时,浮点数的精度问题就会产生,甚至出现一些“不正常"的现象。

    为什么不能用浮点数来表示金额

    先给出结论:金额用BigDecimal !!!

       1)精度丢失问题  

        从上面我们可以知道,float的精度是23位,double精度是63位。在存储或运算过程中,当超出精度时,超出部分会被截掉,由此就会造成误差。

        对于金额而言,舍去不能表示的部分,损失也就产生了。 

    32位的浮点数由3部分组成:1比特的符号位,8比特的阶码(exponent,指数),23比特的尾数(Mantissa,尾数)。这个结构会表示成一个小数点左边为1,以底数为2的科学计数法表示的二进制小数。浮点数的能表示的数据大小范围由阶码决定,但是能够表示的精度完全取决于尾数的长度。long的最大值是2的64次方减1,需要63个二进制位表示,即便是double,52位的尾数也无法完整的表示long的最大值。不能表示的部分也就只能被舍去了。对于金额,舍去不能表示的部分,损失也就产生了。
      了解了浮点数表示机制后,丢失精度的现象也就不难理解了。但是,这只是浮点数不能表示金额的原因之一。还有一个深刻的原因与进制转换有关。十进制的0.1在二进制下将是一个无线循环小数。

    eg:

    public class MyTest {  
        public static void main(String[] args) {  
            float increment = 0.1f;  
            float expected = 1;  
            float sum = 0;  
            for (int i = 0; i < 10; i++) {  
                sum += increment;  
                System.out.println(sum);  
            }  
    
            if (expected == sum) {  
                System.out.println("equal");  
            } else {  
                System.out.println("not equal ");  
            }  
        }  
    }  

    输出结果:

    0.1  
    0.2  
    0.3  
    0.4  
    0.5  
    0.6  
    0.70000005  
    0.8000001  
    0.9000001  
    1.0000001  
    not equal   

       

    2)进制转换误差

        从上面我们可以知道,在计算机实际处理和运算过程中,浮点数本质上是以二进制形式存在的。

        而十进制的0.1在二进制下将是一个无限循环小数,这就会导致误差的出现。

        如果一个小数不是2的负整数次幂,用浮点数表示必然产生浮点误差。

        换言之:A进制下的有限小数,转换到B进制下极有可能是无限小数,误差也由此产生。

    金额计算不能用doube!!!!
    
    金额计算不能用doube!!!!
    
    金额计算不能用doube!!!!
    金额计算必须用BigDecimal

        浮点数不精确的根本原因在于:尾数部分的位数是固定的,一旦需要表示的数字的精度高于浮点数的精度,那么必然产生误差

        解决这个问题的方法是BigDecimal的类,这个类可以表示任意精度的数字,其原理是:用字符串存储数字,转换为数组来模拟大数,实现两个数组的数学运算并将结果返回。

    BigDecimal的使用要点:

        1、BigDecimal变量初始化——必须用传入String的构造方法

    BigDecimal num1 = new BigDecimal(0.005);//用数值转换成大数,有误差
    BigDecimal num12 = new BigDecimal("0.005");//用字符串转换成大数,无误差
    

          因为:不是所有的浮点数都能够被精确的表示成一个double 类型值,有些浮点数值不能够被精确的表示成 double 类型值时,它会被表示成与它最接近的 double 类型的值,此时用它来初始化一个大数,会“先造成了误差,再用产生了误差的值生成大数”,也就是“将错就错”。

        2、使用除法函数在divide的时候要设置各种参数,要精确的小数位数和舍入模式,其中有8种舍入模式:

     

    1、ROUND_UP
    
    远离零的舍入模式。
    
    在丢弃非零部分之前始终增加数字(始终对非零舍弃部分前面的数字加1)。
    
    注意,此舍入模式始终不会减少计算值的大小。
    
    
    2、ROUND_DOWN
    
    接近零的舍入模式。
    
    在丢弃某部分之前始终不增加数字(从不对舍弃部分前面的数字加1,即截短)。
    
    注意,此舍入模式始终不会增加计算值的大小。
    
    
    3、ROUND_CEILING
    
    接近正无穷大的舍入模式。
    
    如果 BigDecimal 为正,则舍入行为与 ROUND_UP 相同;
    
    如果为负,则舍入行为与 ROUND_DOWN 相同。
    
    注意,此舍入模式始终不会减少计算值。
    
    
    4、ROUND_FLOOR
    
    接近负无穷大的舍入模式。
    
    如果 BigDecimal 为正,则舍入行为与 ROUND_DOWN 相同;
    
    如果为负,则舍入行为与 ROUND_UP 相同。
    
    注意,此舍入模式始终不会增加计算值。
    
    
    5、ROUND_HALF_UP
    
    向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则为向上舍入的舍入模式。
    
    如果舍弃部分 >= 0.5,则舍入行为与 ROUND_UP 相同;否则舍入行为与 ROUND_DOWN 相同。
    
    注意,这是我们大多数人在小学时就学过的舍入模式(四舍五入)。
    
    
    6、ROUND_HALF_DOWN
    
    向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则为上舍入的舍入模式。
    
    如果舍弃部分 > 0.5,则舍入行为与 ROUND_UP 相同;否则舍入行为与 ROUND_DOWN 相同(五舍六入)。
    
    
    7、ROUND_HALF_EVEN
    
    向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则向相邻的偶数舍入。
    
    如果舍弃部分左边的数字为奇数,则舍入行为与 ROUND_HALF_UP 相同;
    
    如果为偶数,则舍入行为与 ROUND_HALF_DOWN 相同。
    
    注意,在重复进行一系列计算时,此舍入模式可以将累加错误减到最小。
    
    此舍入模式也称为“银行家舍入法”,主要在美国使用。
    
    如果前一位为奇数,则入位,否则舍去。
    
    以下例子为保留小数点1位,那么这种舍入方式下的结果。
    
    1.15>1.2 1.25>1.2
    
    
    8、ROUND_UNNECESSARY
    
    断言请求的操作具有精确的结果,因此不需要舍入。
    
    如果对获得精确结果的操作指定此舍入模式,则抛出ArithmeticException。
  • 相关阅读:
    存储过程语法二
    存储过程语法一
    存储过程的优点
    .NET中Redis安装部署及使用方法简介
    UEditor富文本web编辑器
    未找到与约束contractname Microsoft.VisualStudio.Utilities.IContentTypeRegistryService
    comet 推送消息到客户端
    文本框 只能输入数字和小数点验证
    asp.net Cache
    Windows10放开Administrator权限
  • 原文地址:https://www.cnblogs.com/alomsc/p/11290550.html
Copyright © 2020-2023  润新知