• 斐波那契数列的递归,迭代(循环),通项公式三种实现


    Fibonacci数列是指这样一种数列,它的前两项均为1,从第三项开始各项均为前两项之和。用数学公式表示出来就是:
                   1                            (n=1,2)
    fib(n)=
                   fib(n-1)+fib(n-2)     (n>2)
            可以证明斐波那契数列的通项公式为fib(n) = [(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 (n=1,2,3.....),关于斐波那契数列的详细介绍请参阅百度百科
    下面我将介绍三种比较常用的求解第n项斐波那契数列的方法:递归法、迭代法、通项公式法。
    1、递归法
    这种方法的优点是简洁和容易理解,缺点是时间复杂度太大,随着n的增大,运算时间将会急剧增加。因此在很多场合这种方法是不可取的。
    使用这种方法的关键代码是:
           
    if(n == 1|| n== 2) {
        return 1;
    } else {
        return fib(n - 1) + fib(n - 2);
    }


    2、迭代法
    这种方法相对于递归法来说在时间复杂度上减小了不少,但代码相对就要复杂些了。它的思想是这样的,假设开始时f0=1,f1=1,currentFib表示当前斐波那契数,则:
    for(i = 1;i < n;i++)
    {
        currentFib = f0 + f1;
        f0 = f1;
        f1 = currentFib;
    }


    这样迭代结束和currentFib就是fib(n)了。
    3、通项公式法
    这种方法是最没技术含量的方法,只要你知道通项公式照着把它翻译成编程语言就可以了,优点不言而喻。
    fib(n) = pow(((1 + sqrt(5)) / 2.0),n) / sqrt(5) - pow(((1 - sqrt(5)) / 2.0),n) / sqrt(5));
    小结:
    这三种方法各有优缺点,使用哪种方法根据实际情况确定,从时间复杂度上来说O(通向公式法)<O(迭代法)<O(递归法)。
    下面我做了一个简单的测试:分别测试这三种方法计算0-30这31个斐波那契数所用的总时间。从测试结果看,递归确实很费时,特别是n在30以后计算起来就很费时了,而另外两种方法计算这31个斐波那契数所费时间基本为0。当然结果不会很准确,但至少能说明问题。

  • 相关阅读:
    List和Dictionary互转
    table html
    华为解锁BL
    安卓小米系统开发一些适配问题
    02布局总结
    02表格布局
    02Framelayout:帧布局
    02线性布局
    02相对布局
    01安卓像素 dpi 、 dip 、分辨率、屏幕尺寸、px、density 关系以及换算
  • 原文地址:https://www.cnblogs.com/allenzhaox/p/3201877.html
Copyright © 2020-2023  润新知