• Kubernetes 弹性伸缩全场景解析(三)


     

    在上一篇文章中,给大家介绍和剖析了 HPA 的实现原理以及演进的思路与历程。本文我们将会为大家讲解如何使用 HPA 以及一些需要注意的细节。

    autoscaling/v1 实践

    v1 的模板可能是大家平时见到最多的也是最简单的,v1 版本的 HPA 只支持一种指标 ——  CPU。传统意义上,弹性伸缩最少也会支持 CPU 与 Memory 两种指标,为什么在 Kubernetes 中只放开了 CPU 呢?其实最早的 HPA 是计划同时支持这两种指标的,但是实际的开发测试中发现:内存不是一个非常好的弹性伸缩判断条件。因为和 CPU不 同,很多内存型的应用,并不会因为 HPA 弹出新的容器而带来内存的快速回收,很多应用的内存都要交给语言层面的 VM 进行管理,也就是说,内存的回收是由 VM 的 GC 来决定的。这就有可能因为 GC 时间的差异导致 HPA 在不恰当的时间点震荡,因此在 v1 的版本中,HPA 就只支持了 CPU 这一种指标。

    一个标准的 v1 模板大致如下:

    apiVersion: autoscaling/v1
    kind: HorizontalPodAutoscaler
    metadata:
      name: php-apache
      namespace: default
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: php-apache
      minReplicas: 1
      maxReplicas: 10
      targetCPUUtilizationPercentage: 50

    其中 scaleTargetRef 表示当前要操作的伸缩对象是谁。在本例中,伸缩的对象是一个 apps/v1 版本的 Deployment。 targetCPUUtilizationPercentage 表示:当整体的资源利用率超过 50% 的时候,会进行扩容。接下来我们做一个简单的 Demo 来实践下。

    1. 登录容器服务控制台,首先创建一个应用部署,选择使用模板创建,模板内容如下:
    apiVersion: apps/v1beta1
      kind: Deployment
      metadata:
    name: php-apache
    labels:
     app: php-apache
      spec:
    replicas: 1
    selector:
     matchLabels:
       app: php-apache
    template:
     metadata:
       labels:
         app: php-apache
     spec:
       containers:
       - name: php-apache
         image: registry.cn-hangzhou.aliyuncs.com/ringtail/hpa-example:v1.0
         ports:
         - containerPort: 80
         resources:
           requests:
             memory: "300Mi"
             cpu: "250m"
      --- 
      apiVersion: v1
      kind: Service
      metadata:
    name: php-apache
    labels:
     app: php-apache
      spec:
    selector:
     app: php-apache
    ports:
    - protocol: TCP
     name: http
     port: 80 
     targetPort: 80
    type: ClusterIP
    1. 部署压测模组 HPA 模板
    apiVersion: autoscaling/v1
    kind: HorizontalPodAutoscaler
    metadata:
    name: php-apache
    namespace: default
    spec:
    scaleTargetRef:
      apiVersion: apps/v1beta1
      kind: Deployment
      name: php-apache
    minReplicas: 1
    maxReplicas: 10
    targetCPUUtilizationPercentage: 50
    1. 开启压力测试
    apiVersion: apps/v1beta1
       kind: Deployment
       metadata:
         name: load-generator 
         labels:
           app: load-generator
       spec:
         replicas: 1
         selector:
           matchLabels:
             app: load-generator
         template:
           metadata:
             labels:
               app: load-generator
           spec:
             containers:
             - name: load-generator
               image: busybox 
               command:
                 - "sh"
                 - "-c"
                 - "while true; do wget -q -O- http://php-apache.default.svc.cluster.local; done"
    1. 检查扩容状态 


    1. 关闭压测应用


    1. 检查缩容状态 


    这样一个使用 autoscaling/v1 的 HPA 就完成了。相对而言,这个版本的 HPA 目前是最简单的,无论是否升级 Metrics-Server 都可以实现。

    autoscaling/v2beta1 实践

    在前面的内容中为大家讲解了 HPA 还有 autoscaling/v2beta1 和 autoscaling/v2beta2 两个版本。这两个版本的区别是 autoscaling/v1beta1 支持了 Resource Metrics 和 Custom Metrics。而在 autoscaling/v2beta2 的版本中额外增加了 External Metrics 的支持。对于 External Metrics 在本文中就不进行过多赘述,因为 External Metrics 目前在社区里面没有太多成熟的实现,比较成熟的实现是 Prometheus Custom Metrics

    上面这张图为大家展现了开启 Metrics Server 后, HPA 如何使用不同类型的Metrics,如果需要使用 Custom Metrics ,则需要配置安装相应的 Custom Metrics Adapter。在下文中,主要为大家介绍一个基于 QPS 来进行弹性伸缩的例子。

    1. 安装 Metrics Server 并在 kube-controller-manager 中进行开启

    目前默认的阿里云容器服务 Kubernetes 集群使用还是 Heapster,容器服务计划在 1.12 中更新 Metrics Server,这个地方需要特别说明下,社区虽然已经逐渐开始废弃 Heapster,但是社区中还有大量的组件是在强依赖 Heapster 的 API,因此阿里云基于 Metrics Server 进行了 Heapster 完整的兼容,既可以让开发者使用 Metrics Server 的新功能,又可以无需担心其他组件的宕机。

    在部署新的 Metrics Server 之前,我们首先要备份一下 Heapster 中的一些启动参数,因为这些参数稍后会直接用在 Metrics Server 的模板中。其中重点关心的是两个 Sink,如果需要使用 Influxdb 的开发者,可以保留第一个 Sink;如果需要保留云监控集成能力的开发者,则保留第二个 Sink。 

    将这两个参数拷贝到 Metrics Server 的启动模板中,在本例中是两个都兼容,并下发部署。

    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: metrics-server
      namespace: kube-system
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: metrics-server
      namespace: kube-system
      labels:
        kubernetes.io/name: "Metrics-server"
    spec:
      selector:
        k8s-app: metrics-server
      ports:
      - port: 443
        protocol: TCP
        targetPort: 443
    ---
    apiVersion: apiregistration.k8s.io/v1beta1
    kind: APIService
    metadata:
      name: v1beta1.metrics.k8s.io
    spec:
      service:
        name: metrics-server
        namespace: kube-system
      group: metrics.k8s.io
      version: v1beta1
      insecureSkipTLSVerify: true
      groupPriorityMinimum: 100
      versionPriority: 100
    ---
    apiVersion: extensions/v1beta1
    kind: Deployment
    metadata:
      name: metrics-server
      namespace: kube-system
      labels:
        k8s-app: metrics-server
    spec:
      selector:
        matchLabels:
          k8s-app: metrics-server
      template:
        metadata:
          name: metrics-server
          labels:
            k8s-app: metrics-server
        spec:
          serviceAccountName: admin
          containers:
          - name: metrics-server
            image: registry.cn-hangzhou.aliyuncs.com/ringtail/metrics-server:1.1
            imagePullPolicy: Always
            command:
            - /metrics-server
            - '--source=kubernetes:https://kubernetes.default'
            - '--sink=influxdb:http://monitoring-influxdb:8086'
            - '--sink=socket:tcp://monitor.csk.[region_id].aliyuncs.com:8093?clusterId=[cluster_id]&public=true'

    接下来我们修改下 Heapster 的 Service,将服务的后端从 Heapster 转移到 Metrics Server。 

    如果此时从控制台的节点页面可以获取到右侧的监控信息的话,说明 Metrics Server 已经完全兼容 Heapster

    此时通过 kubectl get apiservice,如果可以看到注册的 v1beta1.metrics.k8s.io 的 api,则说明已经注册成功。

    接下来我们需要在 kube-controller-manager 上切换 Metrics 的数据来源。kube-controller-manger 部署在每个 master 上,是通过 Static Pod 的托管给 kubelet 的。因此只需要修改 kube-controller-manager 的配置文件,kubelet 就会自动进行更新。kube-controller-manager 在主机上的路径是 /etc/kubernetes/manifests/kube-controller-manager.yaml

    需要将 --horizontal-pod-autoscaler-use-rest-clients=true,这里有一个注意点,因为如果使用 vim 进行编辑,vim 会自动生成一个缓存文件影响最终的结果,所以比较建议的方式是将这个配置文件移动到其他的目录下进行修改,然后再移回原来的目录。至此,Metrics Server 已经可以为 HPA 进行服务了,接下来我们来做自定义指标的部分。

    1. 部署 Custom Metrics Adapter

    如集群中未部署 Prometheus,可以参考《阿里云容器Kubernetes监控(七) - Prometheus监控方案部署》先部署 Prometheus。接下来我们部署 Custom Metrics Adapter

    kind: Namespace
    apiVersion: v1
    metadata:
      name: custom-metrics
    ---
    kind: ServiceAccount
    apiVersion: v1
    metadata:
      name: custom-metrics-apiserver
      namespace: custom-metrics
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
      name: custom-metrics:system:auth-delegator
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: system:auth-delegator
    subjects:
    - kind: ServiceAccount
      name: custom-metrics-apiserver
      namespace: custom-metrics
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: RoleBinding
    metadata:
      name: custom-metrics-auth-reader
      namespace: kube-system
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: Role
      name: extension-apiserver-authentication-reader
    subjects:
    - kind: ServiceAccount
      name: custom-metrics-apiserver
      namespace: custom-metrics
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: custom-metrics-resource-reader
    rules:
    - apiGroups:
      - ""
      resources:
      - namespaces
      - pods
      - services
      verbs:
      - get
      - list
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
      name: custom-metrics-apiserver-resource-reader
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: custom-metrics-resource-reader
    subjects:
    - kind: ServiceAccount
      name: custom-metrics-apiserver
      namespace: custom-metrics
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: custom-metrics-getter
    rules:
    - apiGroups:
      - custom.metrics.k8s.io
      resources:
      - "*"
      verbs:
      - "*"
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
      name: hpa-custom-metrics-getter
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: custom-metrics-getter
    subjects:
    - kind: ServiceAccount
      name: horizontal-pod-autoscaler
      namespace: kube-system
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: custom-metrics-apiserver
      namespace: custom-metrics
      labels:
        app: custom-metrics-apiserver
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: custom-metrics-apiserver
      template:
        metadata:
          labels:
            app: custom-metrics-apiserver
        spec:
          tolerations:
          - key: beta.kubernetes.io/arch
            value: arm
            effect: NoSchedule
          - key: beta.kubernetes.io/arch
            value: arm64
            effect: NoSchedule
          serviceAccountName: custom-metrics-apiserver
          containers:
          - name: custom-metrics-server
            image: luxas/k8s-prometheus-adapter:v0.2.0-beta.0
            args:
            - --prometheus-url=http://prometheus-k8s.monitoring.svc:9090
            - --metrics-relist-interval=30s
            - --rate-interval=60s
            - --v=10
            - --logtostderr=true
            ports:
            - containerPort: 443
            securityContext:
              runAsUser: 0
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: api
      namespace: custom-metrics
    spec:
      ports:
      - port: 443
        targetPort: 443
      selector:
        app: custom-metrics-apiserver
    ---
    apiVersion: apiregistration.k8s.io/v1
    kind: APIService
    metadata:
      name: v1beta1.custom.metrics.k8s.io
    spec:
      insecureSkipTLSVerify: true
      group: custom.metrics.k8s.io
      groupPriorityMinimum: 1000
      versionPriority: 5
      service:
        name: api
        namespace: custom-metrics
      version: v1beta1
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: custom-metrics-server-resources
    rules:
    - apiGroups:
      - custom-metrics.metrics.k8s.io
      resources: ["*"]
      verbs: ["*"]
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
      name: hpa-controller-custom-metrics
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: custom-metrics-server-resources
    subjects:
    - kind: ServiceAccount
      name: horizontal-pod-autoscaler
      namespace: kube-system
    1. 部署手压测应用与 HPA 模板
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      labels:
        app: sample-metrics-app
      name: sample-metrics-app
    spec:
      replicas: 2
      selector:
        matchLabels:
          app: sample-metrics-app
      template:
        metadata:
          labels:
            app: sample-metrics-app
        spec:
          tolerations:
          - key: beta.kubernetes.io/arch
            value: arm
            effect: NoSchedule
          - key: beta.kubernetes.io/arch
            value: arm64
            effect: NoSchedule
          - key: node.alpha.kubernetes.io/unreachable
            operator: Exists
            effect: NoExecute
            tolerationSeconds: 0
          - key: node.alpha.kubernetes.io/notReady
            operator: Exists
            effect: NoExecute
            tolerationSeconds: 0
          containers:
          - image: luxas/autoscale-demo:v0.1.2
            name: sample-metrics-app
            ports:
            - name: web
              containerPort: 8080
            readinessProbe:
              httpGet:
                path: /
                port: 8080
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /
                port: 8080
              initialDelaySeconds: 3
              periodSeconds: 5
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: sample-metrics-app
      labels:
        app: sample-metrics-app
    spec:
      ports:
      - name: web
        port: 80
        targetPort: 8080
      selector:
        app: sample-metrics-app
    ---
    apiVersion: monitoring.coreos.com/v1
    kind: ServiceMonitor
    metadata:
      name: sample-metrics-app
      labels:
        service-monitor: sample-metrics-app
    spec:
      selector:
        matchLabels:
          app: sample-metrics-app
      endpoints:
      - port: web
    ---
    kind: HorizontalPodAutoscaler
    apiVersion: autoscaling/v2beta1
    metadata:
      name: sample-metrics-app-hpa
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: sample-metrics-app
      minReplicas: 2
      maxReplicas: 10
      metrics:
      - type: Object
        object:
          target:
            kind: Service
            name: sample-metrics-app
          metricName: http_requests
          targetValue: 100
    ---
    apiVersion: extensions/v1beta1
    kind: Ingress
    metadata:
      name: sample-metrics-app
      namespace: default
      annotations:
        traefik.frontend.rule.type: PathPrefixStrip
    spec:
      rules:
      - http:
          paths:
          - path: /sample-app
            backend:
              serviceName: sample-metrics-app
              servicePort: 80

    这个压测的应用暴露了一个 Prometheus 的接口。接口中的数据如下,其中 http_requests_total 这个指标就是我们接下来伸缩使用的自定义指标。

    [root@iZwz99zrzfnfq8wllk0dvcZ manifests]# curl 172.16.1.160:8080/metrics
    # HELP http_requests_total The amount of requests served by the server in total
    # TYPE http_requests_total counter
    http_requests_total 3955684
    1. 部署压测应用
    apiVersion: apps/v1beta1
    kind: Deployment
    metadata:
      name: load-generator 
      labels:
        app: load-generator
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: load-generator
      template:
        metadata:
          labels:
            app: load-generator
        spec:
          containers:
          - name: load-generator
            image: busybox 
            command:
              - "sh"
              - "-c"
              - "while true; do wget -q -O- http://sample-metrics-app.default.svc.cluster.local; done"
    1. 查看 HPA 的状态与伸缩,稍等几分钟,Pod 已经伸缩成功了。
    workspace kubectl get hpa
    NAME                     REFERENCE                       TARGETS       MINPODS   MAXPODS   REPLICAS   AGE
    php-apache               Deployment/php-apache           0%/50%        1         10        1          21d
    sample-metrics-app-hpa   Deployment/sample-metrics-app   538133m/100   2         10        10         15h

    最后

    这篇文章主要是给大家带来一个对于 autoscaling/v1 和 autoscaling/v2beta1 的感性认知和大体的操作方式,对于 autoscaling/v1 我们不做过多的赘述,对于希望使用支持 Custom Metrics 的 autoscaling/v2beta1 的开发者而言,也许会认为整体的操作流程过于复杂难以理解,我们会在下一篇文章中为大家详解 autoscaling/v2beta1 使用 Custom Metrics 的种种细节,帮助大家更深入地理解其中的原理与设计思路。

  • 相关阅读:
    BIOS/MBR UEFI/GPT关系与区别-资料整理
    raid 简单了解
    MBR主引导记录
    linux 安装vscode
    chrome 获得点击按钮时的事件
    python计算纪念日相关
    python error: curl: (1) Protocol "'https" not supported or disabled in libcurl
    linux go with vscode
    postman 进阶技巧
    mysql常用时间函数与类型转换
  • 原文地址:https://www.cnblogs.com/alisystemsoftware/p/11286988.html
Copyright © 2020-2023  润新知