驱动SD卡是件容易让人抓狂的事情,驱动SD卡好比SDRAM执行页读写,SD卡虽然不及SDRAM的麻烦要求(时序参数),但是驱动过程却有猥琐操作。除此此外,描述语言只要稍微比较一下C语言,描述语言一定会泪流满面,因为嵌套循环,嵌套判断,或者嵌套函数等都是它的痛。.
史莱姆模块是多模块建模的通病,意指结构能力非常脆弱的模块,暴力的嵌套行为往往会击垮模块的美丽身躯,好让脆弱结构更加脆弱还有惨不忍睹,最终搞垮模块的表达能力。描述语言预想驾驭SD卡,关键的地方就是如何提升模块的结构能力。简单而言,描述语言如何不失自身的美丽,又用自身的方法,去实现嵌套循环或者嵌套函数等近似的内容呢?
低级建模I之际,论结构能力它确实有点勉强,所以SD卡的实验才姗姗来迟。如今病猫已经进化为老虎,而且进化之初的新生儿都会肌饿如心焚,理智也不健全。因为如此,低级建模II才会不停舔着嘴唇,然后渴望新生的第一祭品。遇见SD卡,它仿佛遇见美味的猎物,口水都下流到一塌糊涂。
诸位少年少女们,让我们一起欢呼活祭仪式的开始吧!
二十一世纪的今天,SD卡演化的速度简直迅雷不及掩耳,如今SD卡已经逐渐突破64GB大关。对此,SD卡也存在N多版本,如版本SDV1.×,版本SDV2,或者SDHCV2等,当然未来还会继续演化下去。所谓版本是指建造工艺还有协议,粗略而言,版本SDV1.×是指容量为2GB以下的SD卡,版本SDV2则指容量为2GB~4GB之间的SD卡,版本SDHCV2则是容量为4GB以上的SD卡。
话虽如此,不过实际情况还要根据各个厂商的心情而定,有些厂商的SD卡虽为4GB,但是版本却是SDV1.×,还有厂商的SD卡的虽为 2GB,不过版本却是SDV2,情况尽是让人哭笑不得。此外,版本不会印刷在硬件的表面上,而且不同版本也有不同驱动方法。俗语有云,擒贼先擒卒——凡事从娃娃抓起,所以笔者遵循伟大的智慧,从版本SDV1.×开始动手。
图24.1 SPI模式。
SD卡有SDIO还有SPI两种模式,后者简单又省事,所以SPI模式都是众多懒惰鬼的喜爱。SPI模式一般只用4只引脚,而且主机(FPGA)与从机(SD卡)之间的链接如图24.1所示,至于引脚的聂荣如表24.1所示:
表24.1 SD卡SPI模式的引脚说明。
引脚 |
说明 |
SD_CLK |
串行时钟,闲置为高 |
SD_NCS |
片选,闲置为高,拉低有效 |
SD_DI |
数据输入,也是主机输出 |
SD_DOUT |
数据输出,也是主机输入 |
虽然DS1302也有SPI,但是数据线是双向IO,反之SD卡则是一对出入的数据线。话虽如此,它们两者都有乖乖遵守SPI的传输协议,即下降沿设置数据,上升沿锁存数据。
图24.2 写一个字节(主机视角)。
图24.2是主机视角写一个字节的理想时序。主机会利用时钟的下降沿,由高至低发送一个字节的数据。
图24.3 读一个字节(主机视角)。
图24.2是主机视角读一个字节的理想时序。从机会利用时钟的下降沿,由高至低发送一个字节的数据,主机则会利用时钟信号的上升沿,由高至低读取一个字节的数据。
图24.4 同时读写一个字节(主机视角)。
我们知道SD卡有一对读写的数据线,为了节省时间,数据读写是同时发生的。如图24.4所示,那是主机在同时读写的理想时序,读者可以看成是图24.2 还有图24.3的结合体。
对此,Verilog可以这样描述,结果如代码24.1所示:
1. case(i)
2.
3. 0,1,2,3,4,5,6,7:
4. begin
5. rDI <= iData[ 7-i ];
6.
7. if( C1 == 0 ) rSCLK <= 1'b0;
8. else if( C1 == isHalf ) rSCLK <= 1'b1;
9.
10. if( C1 == isQuarter ) D1[ 7-i ] <= SD_DOUT;
11.
12. if( C1 == isFull -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end
13. else begin C1 <= C1 + 1'b1; end
14. end
代码24.1
如代码24.1所示,第12~13行表示步骤逗留的时间,其中isFull表示一个时钟周期。第7~8行表示,C1为0拉低时钟,C1为半个周期则拉高时钟。第5行表示,任何时候都更新数据,也可以看成C1为0输出数据。第10行表示,C1为四分之一周期锁存数据。
第3行表示,步骤0~7造就一个字节的读写。还有第5~10行的 D1[7-i] 表示,读写数据由高至低。
好奇的朋友一定会疑惑道,为何第10行的锁存行为不是时钟的半周期(上升沿),而是四分之一呢?原因很单纯,因为数据在这个时候最为有效。
图24.5 写命令(主机视角)。
当然,SD卡不是给足两只骨头就会满足的哈士奇 ... 为此,除了单纯的读写数据意外,SD卡还有所谓的写命令,而写命令则是读写字节的复合体。如图24.5所示,那是主机写命令的理想时序,主机先由高至低发送6个字节的命令。SD卡接受完毕以后,便会反馈一个字节的数据。期间,片选信号必须处于拉低状态。对此,Verilog可以这样表示,结果如代码24.2所示:
1. case( i )
2.
3. 0:
4. begin rCMD <= iAddr; i <= i + 1'b1; end
5.
6. 1,2,3,4,5,6:
7. begin T <= rCMD[47:40]; rCMD <= rCMD << 8; i <= FF_Write; Go <= i + 1'b1; end
8.
9. 7:
10. begin i <= FF_Read; Go <= i + 1'b1; end
11.
12. 8:
13. if( C2 == 100 ) begin C2 <= 10'd0; i <= i + 1'b1; end
14. else if( D1 != 8'hff ) begin C2 <= 10'd0; i <= i + 1'b1; end
15. else begin C2 <= C2 + 1'b1; i <= FF_Read; Go <= i; end
16.
17. ...
18.
19. 12,13,14,15,16,17,18,19:
20. begin
21. rDI <= T[ 19-i ];
22. if( C1 == 0 ) rSCLK <= 1'b0;
23. else if( C1 == isHalf ) rSCLK <= 1'b1;
24.
25. if( C1 == isQuarter ) D1[ 19-i ] <= SD_DOUT;
26.
27. if( C1 == isFull -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end
28. else begin C1 <= C1 + 1'b1; end
29. end
30.
31. 20:
32. begin i <= Go; end
代码24.2
步骤12~20是读写一个字节的伪函数,步骤0准备6个字节的命令,步骤1~6由高至低发送命令,并且进入伪函数。步骤7进入伪函数,并且读取一个字节的反馈数据(注意FF_Write与FF_Read都指向步骤12)。反馈数据一般都是 8’hff 以外的结果,如果不是则重复读取反馈数据100次,如果SD卡反应正常,都会在这100次以内反馈 8’hff以外的结果。
简单而言,如何驱动SD卡就是如何使用相关的命令。版本SDV1.×的SD卡只需4个命令而已,亦即:
(一)CMD0,复位命令;
(二)CMD1,初始化命令;
(三)CMD24,写命令;
(四)CMD17,读命令。
CMD0用来复位SD卡,好让SD卡处于(IDLE)待机状态。CMD1用来初始化SD卡,好让SD卡处于(Transfer)传输状态。CMD24将512字节数据写入指定的地址,CMD17则将512字节数据从指定的地址读出来。
图24.6 CMD0的理想时序图。
图24.6是CMD0的理想时序图,首先在T1延迟1ms给予SD卡热身时间,然后再在T2给予80个准备的时钟。T3之际拉低CS,T4之际则发送命令CMD0 { 8’h40, 32’d0, 8’h95},然后等待SD卡反馈数据R1。如果SD卡成功接收命令CMD0,内容则是8’h01。T5之际拉高CS,T6之际再8个结束时钟。对此,Verilog可以这样描述,结果如代码24.3所示:
1. case( i )
2.
3. 0: // Disable cs, prepare Cmd0
4. begin rCS <= 1'b1; D4 <= {8'h40, 32'd0, 8'h95}; i <= i + 1'b1; end
5.
6. 1: // Wait 1MS for warm up;
7. if( C1 == T1MS -1) begin C1 <= 16'd0; i <= i + 1'b1; end
8. else begin C1 <= C1 + 1'b1; end
9.
10. 2: // Send 80 free clock
11. if( C1 == 10'd10 ) begin C1 <= 16'd0; i <= i + 1'b1; end
12. else if( iDone ) begin isCall[0] <= 1'b0; C1 <= C1 + 1'b1; end
13. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
14.
15. 3: // Enable cs
16. begin rCS <= 1'b0; i <= i + 1'b1; end
17.
18. 4: // Try 200 time, ready error code.
19. if( C1 == 10'd200 ) begin D2 <= CMD0ERR; C1 <= 16'd0; i <= 4'd8; end
20. else if( iDone && iData != 8'h01) begin isCall[1] <= 1'b0; C1 <= C1 + 1'b1; end
21. else if( iDone && iData == 8'h01 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
22. else isCall[1] <= 1'b1;
23.
24. 5: // Disable cs
25. begin rCS <= 1'b1 ; i <= i + 1'b1; end
26.
27. 6: // Send free clock
28. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
29. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
30.
31. 7: // Disable cs, ready OK code
32. begin D2 <= CMD0OK; i <= i + 1'b1; end //;
33.
34. 8: // Disbale cs, generate done signal
35. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
36.
37. 9:
38. begin isDone <= 1'b0; i <= 4'd0; end
代码24.3
我们先假设 isCall[1]执行写命令,isCall[0]则是执行读写字节。如代码24.3所示,步骤0用来准备CMD0命令。步骤1延迟1ms。步骤2执行10次无意义的读写,以示给予80个准备时钟。在此读者稍微注意一下第12行,每当完成一次读写C1便会递增一下,C1递增10次便表示读写执行10次。
步骤3拉低CS,并且步骤4发送命令。步骤4可能会吓坏一群小朋友,不过只要耐心解读,其它它并不可怕。首先执行第22行的写命令,如果反馈数据不为8’h01(第20行),消除isDo便递增C1,然后再返回第22行。如果反馈数据为 8’h01(第21行)
,消除isDo与C1然后继续步骤。如果重复执行100次都失败,D2赋值CMD0的失败信息,消除C1并且i直接步骤8。
步骤5拉低CS,步骤6则给予8个结束时钟。步骤7为D2赋值CMD0的成功信息,步骤8~9拉高CS并且产生完成信号。
图24.7 CMD1的理想时序图。
图24.7是CMD1的理想时序图,T0&T1之际拉低CS并且发送六个字节的命令CMD1 {8’h41,32’d0,8’hff}。SD卡接受命令以后便反馈数据R1——8’h00。T2&T3之际拉高CS并且给予8个结束时钟。Verilog的描述结果如代码24.4所示:
1. case( i )
2.
3. 0: // Enable cs, prepare Cmd1
4. begin rCS <= 1'b0; D4 <= { 8'h41,32'd0,8'hff }; i <= i + 1'b1; end
5.
6. 1: // Try 100 times, ready error code.
7. if( C1 == 10'd100 ) begin D2 <= CMD1ERR; C1 <= 16'd0; i <= 4'd5; end
8. else if( iDone && iData != 8'h00) begin isCall[1]<= 1'b0; C1 <= C1 + 1'b1; end
9. else if( iDone && iData == 8'h00 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
10. else isCall[1] <= 1'b1;
11.
12. 2: // Disable cs
13. begin rCS <= 1'b1; i <= i + 1'b1; end
14.
15. 3: // Send free clock
16. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
17. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
18.
19. 4: // Disable cs, ready OK code.
20. begin D2 <= CMD1OK; i <= i + 1'b1; end
21.
22. 5: // Disable cs, generate done signal
23. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
24.
25. 6:
26. begin isDone <= 1'b0; i <= 4'd0; end
代码24.4
如代码24.4所示,步骤0准备命令CMD1。步骤1重复发送CMD1命令100次,直至反馈数据R1为8’h00为止,否则反馈错误信息。步骤2拉高CS,步骤3则给予结束时钟。步骤4反馈成功信息,步骤5~6拉高CS之余也产生完成信号。
好奇的同学一定会觉得疑惑,命令CMD0与命令CMD1同样反馈数据R1,为何前者是8’h01,后者则是8’h00呢?事实上,R1的内容也反应SD卡的当前状态,SD卡有待机状态(IDLE)还有传输状态(Transfer)等两个常见状态。
图24.8 版本V1.×的初始化流程图。
如图24.8所示,那是版本V1.x的初始化流程图。主机先发送CMD0,SD卡接收以后如果反馈R1为8’h01便继续流程,否则重复发送CMD0。主机接着发送CMD1,如果SD卡接收并且反馈R1为8’h00,该结果表示SD卡以从待机状态进入传输状态,余下CMD24还有CMD17才有效。
图24.9 CMD24的理想时序图。
图24.9是CMD24的理想时序图。T0~1之际,主机拉低CS之余,主机也向SD卡发送写命令CMD24,其中Addr 3~Addr 0是写入地址。SD卡接收以后便以反馈数据8’h00表示接收成功。保险起见,主机在T2给足800个准备时钟,如果读者嫌准备时钟给太多,读者可以自行缩小至80。T3之际,主机发送8’hfe以示写512字节开始,T4~T7则是写512字节的过程。T8~T9分别写入两个CRC字节(CRC校验)。
完后,SD卡便会反馈8’h05以示写512字节成功,此刻(T10~11)主机读取并且检测。事后直至SD卡发送8’hff为止,SD卡都处于忙状态。换言之,如果主机在T12成功读取8’hff,结果表示SD卡已经忙完了。T13之际,主机再拉高CS。对此,Verilog可以这样描述,结果如代码24.5所示:
1. case(i)
2.
3. 0: // Enable cs, prepare cmd24
4. begin rCS <= 1'b0; D4 = { 8'h58, iAddr, 9'd0, 8'hFF }; i <= i + 1'b1; end
5.
6. 1: // Try 100 times, ready error code.
7. if( C1 == 100 ) begin D2 <= CMD24ERR; C1 <= 16'd0; i <= 4'd14; end
8. else if( iDone && iData != 8'h00) begin isCall[1] <= 1'b0; C1 <= C1 + 1'b1; end
9. else if( iDone && iData == 8'h00 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
10. else isCall[1] <= 1'b1;
11.
12. 2: // Send 800 free clock
13. if( C1 == 100 ) begin C1 <= 16'd0; i <= i + 1'b1; end
14. else if( iDone ) begin isCall[0] <= 1'b0; C1 <= C1 + 1'b1; end
15. else begin isCall[0] <= 1'b1; D1 <= 8'hFF; end
16.
17. 3: // Send Call byte 0xfe
18. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
19. else begin isCall[0] <= 1'b1; D1 <= 8'hFE; end
20.
21. 4: // Pull up read req.
22. begin isEn[0] <= 1'b1; i <= i + 1'b1; end
23.
24. 5: // Pull down read req.
25. begin isEn[0] <= 1'b0; i <= i + 1'b1; end
26.
27. 6: // Write byte from fifo
28. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
29. else begin isCall[0] <= 1'b1; D1 <= iDataFF; end
30.
31. 7: // Repeat 512 times
32. if( C1 == 10'd511 ) begin C1 <= 16'd0; i <= i + 1'b1; end
33. else begin C1 <= C1 + 1'b1; i <= 4'd4; end
34.
35. 8: // Write 1st CRC
36. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
37. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
38.
39. 9: // Write 2nd CRC
40. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
41. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
42.
43. 10: // Read Respond
44. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
45. else begin isCall[0] <= 1'b1; end
46.
47. 11: // if not 8'h05, faild and ready error code
48. if( (iData & 8'h1F) != 8'h05 ) begin D2 <= CMD24ERR; i <= 4'd14; end
49. else i <= i + 1'b1;
50.
51. 12: // Wait unitl sdcard free
52. if( iDone && iData == 8'hff ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
53. else if( iDone ) begin isCall[0] <= 1'b0; end
54. else begin isCall[0] <= 1'b1; end
55.
56. 13: // Disable cs, ready OK code;
57. begin D2 <= CMD24OK; i <= i + 1'b1; end
58.
59. 14: // Disable cs, generate done signal
60. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
61.
62. 15:
63. begin isDone <= 1'b0; i <= 4'd0; end
代码24.5
步骤0拉低CS之余,它也准备写命令CMD24,其中 { iAddr, 9’d0 } 表示地址有512偏移量,内容等价 iAddr << 9。步骤1尝试写命令100次,直至反馈内容为8’h00,否则便准备错误信息。步骤2发送800个准备时钟,如果嫌多可以自行缩小。步骤3写入开始字节 8’hfe。步骤4~5主要是从FIFO取得数据,步骤6则是将数据写入SD卡,步骤7用来控制循环的次数。步骤8~9分别写入两个CRC字节,内容随意。
步骤10读取反馈数据,步骤11则检测反馈数据是否为8’h05,是则继续,不是则准备错误信息,并且跳转步骤14(结束操作)。步骤12不断读取数据,直至读取内容为8’hff位置。步骤13准备成功信息。步骤14~15拉高CS之余也产生完成信号。在此,读者要稍微注意一下,步骤4~7组合起来,类似先执行后判断的 do ... while 循环。
图24.10 CMD17的理想时序图。
图24.10是CMD17的理想时序图。T0~T1之际,主机先拉低CS再发送命令CMD17,其中Addr3~Addr0是指定的读地址,事后SD卡便会反馈数据8’h00以示接收成功。T2之际,主机会不断读取数据,如果读取内容是8’hfe,结果表示SD卡已经准备发送512字节数据。T3~T6之际,主机不断从SD卡那里读取512个字节的数据。T7~T8之际,主机读取两个字节的CRC,然后在T9~10拉高CS之余也给足8个结束时钟。
换之,Verilog的描述结果如代码24.6所示:
1. case( i )
2.
3. 0: // Enable cs, prepare cmd17
4. begin rCS <= 1'b0; D4 <= { 8'h51, iAddr, 9'd0, 8'hFF }; i <= i + 1'b1; end
5.
6. 1: // Try 100 times, ready error code
7. if( C1 == 100 ) begin D2 <= CMD17ERR; C1 <= 16'd0; i <= 4'd12; end
8. else if( iDone && iData != 8'h00 ) begin isCall[1] <= 1'b0; C1 <= C1 + 1'b1; end
9. else if( iDone && iData == 8'h00 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
10. else isCall[1] <= 1'b1;
11.
12. 2: // Wait read ready
13. if( iDone && iData == 8'hfe ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
14. else if( iDone && iData != 8'hfe ) begin isCall[0] <= 1'b0; end
15. else isCall[0] <= 1'b1;
16.
17. 3: // Read byte
18. if( iDone ) begin D3 <= iData; isCall[0] <= 1'b0; i <= i + 1'b1; end
19. else begin isCall[0] <= 1'b1; end
20.
21. 4: // Pull up write req.
22. begin isEn[1] <= 1'b1; i <= i + 1'b1; end
23.
24. 5: // Pull down write req.
25. begin isEn[1] <= 1'b0; i <= i + 1'b1; end
26.
27. 6: // Repeat 512 times
28. if( C1 == 10'd511 ) begin C1 <= 16'd0; i <= i + 1'b1; end
29. else begin C1 <= C1 + 1'b1; i <= 4'd3; end
30.
31. 7,8: // Read 1st and 2nd byte CRC
32. if( iDone ) begin D3 <= iData; isCall[0] <= 1'b0; i <= i + 1'b1; end
33. else isCall[0] <= 1'b1;
34.
35. 9: // Disable cs
36. begin rCS <= 1'b1; i <= i + 1'b1; end
37.
38. 10: // Send free clock
39. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
40. else begin isCall[0] <= 1'b1; D1 <= 8'hFF; end
41.
42. 11: // Ready OK code
43. begin D2 <= CMD17OK; i <= i + 1'b1; end
44.
45. 12: // Disable cs, generate done signal
46. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
47.
48. 13:
49. begin isDone <= 1'b0; i <= 4'd0; end
代码24.6
步骤0拉低CS之余也准备命令CMD17,其中 {iAddr,9’d0} 为 512的偏移量。步骤1重复100次写命令,直至SD卡反馈8’h00,否则准备错误信息,然后跳转步骤12(结束操作)。步骤2不断读取数据,直至读取内容为8’hfe为止。步骤3读取数据,步骤4~5则将数据写入FIFO,步骤6用来控制循环。步骤7~8读取两个字节CRC。步骤9拉高CS,步骤10则给足8个结束时钟。步骤11准备成功信息。步骤12拉高CS之余,也产生完成信号。
上述内容理解完毕以后,我们便可以开始建模了。
图24.11 SD卡基础模块的建模图。
图24.11是SD卡基础模块的建模图,其中内容包括SD卡控制模块,SD卡功能模块,还有两个fifo储存模块。SD卡功能模块的沟通信号Call/Done有两位位宽,其中[1]为写命令,[0]为字节读写。SD卡控制模块的Call/Done位宽有四,表示它支持4个命令,其中[3]为CMD24,[2]为CMD17,[1]为CMD1,[0]为CMD0。两只FIFO储存模块充当写缓存(上)还有读缓存(下),它们被外界调用以外,它们也被SD卡控制模块调用。
sdcard_funcmod.v
图24.12 SD卡功能模块的建模图。
图24.12是SD卡功能模块的建模图,右边是驱动SD卡的顶层信号,左边则是沟通用,还有命令,iData与oData等数据信号。Call/Done位宽有两,其中[1]为写命令,[0]为读写数据。
图24.13 不同状态之间的传输速率。
话题继续之前,请允许笔者作足一些小补充。如图24.13所示,待机状态SD卡为低速状态,速率推荐为100Khz~500Khz之间。保险起见,笔者取为100Khz。反之,传输状态SD卡处于高速状态,速率推荐为2Mhz或者以上。笔者衡量各种因数以后,笔者决定选择10Mhz。丧心病狂的读者当然可以选择10Mhz以上的速率,如果硬件允许的话 ... 据说,100Mhz也没有问题。
1. module sdcard_funcmod
2. (
3. input CLOCK, RESET,
4. input SD_DOUT,
5. output SD_CLK,
6. output SD_DI,
7.
8. input [1:0]iCall,
9. output oDone,
10. input [47:0]iAddr,
11. input [7:0]iData,
12. output [7:0]oData
13. );
以上内容为出入端声明。
14. parameter FLCLK = 10'd500, FLHALF = 10'd250, FLQUARTER = 10'd125; //T20US = 100Khz
15. parameter FHCLK = 10'd5, FHHALF = 10'd1, FHQUARTER = 10'd2; // T1us = 10Mhz
16.
17. reg [9:0]isFull,isHalf,isQuarter;
18.
19. always @ ( posedge CLOCK or negedge RESET )
20. if( !RESET )
21. begin
22. isFull <= FLCLK;
23. isHalf <= FLHALF;
24. isQuarter <= FLQUARTER;
25. end
26. else if( iAddr[47:40] == 8'h41 && isDone )
27. begin
28. isFull <= FHCLK;
29. isHalf <= FHHALF;
30. isQuarter <= FHQUARTER;
31. end
32.
第14~15行是100Khz还有10Mhz的常量声明,F×CLK为一个周期,F×HALF为半个周期,F×QUARTER为四分之一周期,其中×为L表示低速,×为H表示高速。第17~31行是设置速率的周边操作,起始下为低速(第22~24)。不过,当命令CMD1执行成功以后,速率转为为高速(第26~31行)。
33. parameter FF_Write = 5'd12, FF_Read = 5'd12;
34.
35. reg [5:0]i,Go;
36. reg [9:0]C1,C2;
37. reg [7:0]T,D1;
38. reg [47:0]rCMD;
39. reg rSCLK,rDI;
40. reg isDone;
41.
42. always @ ( posedge CLOCK or negedge RESET )
43. if( !RESET )
44. begin
45. { i,Go } <= { 6'd0,6'd0};
46. { C1,C2 } <= { 10'd0, 10'd0 };
47. { T,D1 } <= { 8'd0,8'd0 };
48. rCMD <= 48'd0;
49. { rSCLK,rDI } <= 2'b11;
50. isDone <= 1'b0;
51. end
以上内容为相关的寄存器声明还有复位操作。其中第33行是伪函数的入口地址。
52. else if( iCall[1] )
53. case( i )
54.
55. 0:
56. begin rCMD <= iAddr; i <= i + 1'b1; end
57.
58. 1,2,3,4,5,6:
59. begin T <= rCMD[47:40]; rCMD <= rCMD << 8; i <= FF_Write; Go <= i + 1'b1; end
60.
61. 7:
62. begin i <= FF_Read; Go <= i + 1'b1; end
63.
64. 8:
65. if( C2 == 100 ) begin C2 <= 10'd0; i <= i + 1'b1; end
66. else if( D1 != 8'hff ) begin C2 <= 10'd0; i <= i + 1'b1; end
67. else begin C2 <= C2 + 1'b1; i <= FF_Read; Go <= i; end
68.
69. 9:
70. begin isDone <= 1'b1; i <= i + 1'b1; end
71.
72. 10:
73. begin isDone <= 1'b0; i <= 6'd0; end
74.
75. /******************************/
76.
77. 12,13,14,15,16,17,18,19:
78. begin
79. rDI <= T[ 19-i ];
80.
81. if( C1 == 0 ) rSCLK <= 1'b0;
82. else if( C1 == isHalf ) rSCLK <= 1'b1;
83.
84. if( C1 == isQuarter ) D1[ 19-i ] <= SD_DOUT;
85.
86. if( C1 == isFull -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end
87. else begin C1 <= C1 + 1'b1; end
88. end
89.
90. 20:
91. begin i <= Go; end
92.
93. endcase
以上内容为写命令。
94. else if( iCall[0] )
95. case( i )
96.
97. 0,1,2,3,4,5,6,7:
98. begin
99. rDI <= iData[ 7-i ];
100.
101. if( C1 == 0 ) rSCLK <= 1'b0;
102. else if( C1 == isHalf ) rSCLK <= 1'b1;
103.
104. if( C1 == isQuarter ) D1[ 7-i ] <= SD_DOUT;
105.
106. if( C1 == isFull -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end
107. else begin C1 <= C1 + 1'b1; end
108. end
109.
110. 8:
111. begin isDone <= 1'b1; i <= i + 1'b1; end
112.
113. 9:
114. begin isDone <= 1'b0; i <= 6'd0; end
115.
116. endcase
117.
以上内容为读写一个字节。
118. assign SD_CLK = rSCLK;
119. assign SD_DI = rDI;
120. assign oDone = isDone;
121. assign oData = D1;
122.
123. endmodule
以上内容为相关的输出驱动。
fifo_savemod.v
图24.14 FIFO储存模块的建模图。
图24.14是大伙看烂的FIFO储存模块,具体内容让我们来看代码吧。
1. module fifo_savemod
2. (
3. input CLOCK, RESET,
4. input [1:0]iEn,
5. input [7:0]iData,
6. output [7:0]oData,
7. output [1:0]oTag
8. );
9. initial begin
10. for( C1 = 0; C1 < 1024; C1 = C1 + 1'b1 )
11. begin RAM[ C1 ] <= 8'd0; end
12. end
13.
14. reg [7:0] RAM [1023:0];
15. reg [10:0] C1 = 11'd0,C2 = 11'd0; // N+1
16. reg [7:0]D1;
17.
18. always @ ( posedge CLOCK or negedge RESET )
19. if( !RESET )
20. begin
21. C1 <= 11'd0;
22. end
23. else if( iEn[1] )
24. begin
25. RAM[ C1[9:0] ] <= iData;
26. C1 <= C1 + 1'b1;
27. end
28.
29. always @ ( posedge CLOCK or negedge RESET )
30. if( !RESET )
31. begin
32. C2 <= 11'd0;
33. D1 <= 8'd0;
34. end
35. else if( iEn[0] )
36. begin
37. D1 <= RAM[ C2[9:0] ];
38. C2 <= C2 + 1'b1;
39. end
40.
41. assign oData = D1;
42. assign oTag[1] = ( C1[10]^C2[10] & C1[9:0] == C2[9:0] ); // Full Left
43. assign oTag[0] = ( C1 == C2 ); // Empty Right
44.
45. endmodule
由于数据缓冲对象不是SDRAM,所以第41行的oData由D1驱动而不是RAM直接驱动。余下内容,读者自己看着办吧。
sdcard_ctrlmod.v
图24.15 SD卡控制模块的建模图。
图24.15是SD卡控制模块的建模图,它好比一只刺猬,全身上下都长满箭头,让人看见也怕怕。右边是调用功能模块的信号群,上下则是调用储存模块的信号群。左边则是被外界调用的信号群,其中顶层信号SD_NCS是SD卡的片选信号。此外,Call/Done位宽有4,表示该模块支持4个命令,[3]为CMD24, [2]为CMD17, [1]为CMD1,[0]为CMD0。至于oTag则是用来反馈命令的执行状态。
1. module sdcard_ctrlmod
2. (
3. input CLOCK, RESET,
4. output SD_NCS,
5.
6. input [3:0]iCall,
7. output oDone,
8. input [22:0]iAddr,
9. output [7:0]oTag,
10.
11. output [1:0]oEn, // [1] Write [0] Read
12. input [7:0]iDataFF,
13. output [7:0]oDataFF,
14.
15. output [1:0]oCall,
16. input iDone,
17. output [47:0]oAddr,
18. input [7:0]iData,
19. output [7:0]oData
20. );
以上内容为相关的出入端声明,第6~9行是外界调用的信号,第11~13行是调用FIFO的信号,第15~19则是调用功能模块的信号。
21. parameter CMD0ERR = 8'hA1, CMD0OK = 8'hA2, CMD1ERR = 8'hA3, CMD1OK = 8'hA4;
22. parameter CMD24ERR = 8'hA5, CMD24OK = 8'hA6, CMD17ERR = 8'hA7, CMD17OK = 8'hA8;
23. parameter T1MS = 16'd10;
24.
以上内容为各个命令的成功信息还有失败信息之间的常量声明。
25. reg [3:0]i;
26. reg [15:0]C1;
27. reg [7:0]D1,D2,D3; // D1 WrData, D2 FbData, D3 RdData
28. reg [47:0]D4; // D4 Cmd
29. reg [1:0]isCall,isEn;
30. reg rCS;
31. reg isDone;
32.
33. always @ ( posedge CLOCK or negedge RESET )
34. if( !RESET )
35. begin
36. i <= 4'd0;
37. C1 <= 16'd0;
38. { D1,D2,D3 } <= { 8'd0, 8'd0, 8'd0 };
39. D4 <= 48'd0;
40. { isCall, isEn } <= { 2'd0,2'd0 };
41. rCS <= 1'b1;
42. end
以上内容为相关的寄存器声明还有复位操作,其中D1暂存写数据,D2暂存反馈信息,D3暂存读数据,D4暂存命令,isDo控制写命令还有字节读写,isEn控制FIFO的读写。
所有寄存器的复位值为0,rCS除外。
43. else if( iCall[3] ) // cmd24
44. case( i )
45.
46. 0: // Enable cs, prepare cmd24
47. begin rCS <= 1'b0; D4 = { 8'h58, iAddr, 9'd0, 8'hFF }; i <= i + 1'b1; end
48.
49. 1: // Try 100 times, ready error code.
50. if( C1 == 100 ) begin D2 <= CMD24ERR; C1 <= 16'd0; i <= 4'd14; end
51. else if( iDone && iData != 8'h00) begin isCall[1] <= 1'b0; C1 <= C1 + 1'b1; end
52. else if( iDone && iData == 8'h00 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
53. else isCall[1] <= 1'b1;
54.
55. 2: // Send 800 free clock
56. if( C1 == 100 ) begin C1 <= 16'd0; i <= i + 1'b1; end
57. else if( iDone ) begin isCall[0] <= 1'b0; C1 <= C1 + 1'b1; end
58. else begin isCall[0] <= 1'b1; D1 <= 8'hFF; end
59.
60. 3: // Send Call byte 0xfe
61. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
62. else begin isCall[0] <= 1'b1; D1 <= 8'hFE; end
63.
64. /*****************/
65.
66. 4: // Pull up read req.
67. begin isEn[0] <= 1'b1; i <= i + 1'b1; end
68.
69. 5: // Pull down read req.
70. begin isEn[0] <= 1'b0; i <= i + 1'b1; end
71.
72. 6: // Write byte from fifo
73. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
74. else begin isCall[0] <= 1'b1; D1 <= iDataFF; end
75.
76. 7: // Repeat 512 times
77. if( C1 == 10'd511 ) begin C1 <= 16'd0; i <= i + 1'b1; end
78. else begin C1 <= C1 + 1'b1; i <= 4'd4; end
79.
80. /*****************/
81.
82. 8: // Write 1st CRC
83. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
84. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
85.
86. 9: // Write 2nd CRC
87. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
88. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
89.
90. 10: // Read Respond
91. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
92. else begin isCall[0] <= 1'b1; end
93.
94. 11: // if not 8'h05, faild and ready error code
95. if( (iData & 8'h1F) != 8'h05 ) begin D2 <= CMD24ERR; i <= 4'd14; end
96. else i <= i + 1'b1;
97.
98. 12: // Wait unitl sdcard free
99. if( iDone && iData == 8'hff ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
100. else if( iDone ) begin isCall[0] <= 1'b0; end
101. else begin isCall[0] <= 1'b1; end
102.
103. /*****************/
104.
105. 13: // Disable cs, ready OK code;
106. begin D2 <= CMD24OK; i <= i + 1'b1; end
107.
108. 14: // Disable cs, generate done signal
109. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
110.
111. 15:
112. begin isDone <= 1'b0; i <= 4'd0; end
113.
114. endcase
以上内容为命令CMD24。
115. else if( iCall[2] ) // cmd17
116. case( i )
117.
118. 0: // Enable cs, prepare cmd17
119. begin rCS <= 1'b0; D4 <= { 8'h51, iAddr, 9'd0, 8'hFF }; i <= i + 1'b1; end
120.
121. 1: // Try 100 times, ready error code
122. if( C1 == 100 ) begin D2 <= CMD17ERR; C1 <= 16'd0; i <= 4'd12; end
123. else if( iDone && iData != 8'h00 ) begin isCall[1] <= 1'b0; C1 <= C1 + 1'b1; end
124. else if( iDone && iData == 8'h00 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
125. else isCall[1] <= 1'b1;
126.
127. 2: // Wait read ready
128. if( iDone && iData == 8'hfe ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
129. else if( iDone && iData != 8'hfe ) begin isCall[0] <= 1'b0; end
130. else isCall[0] <= 1'b1;
131.
132. /********/
133.
134. 3: // Read byte
135. if( iDone ) begin D3 <= iData; isCall[0] <= 1'b0; i <= i + 1'b1; end
136. else begin isCall[0] <= 1'b1; end
137.
138. 4: // Pull up write req.
139. begin isEn[1] <= 1'b1; i <= i + 1'b1; end
140.
141. 5: // Pull down write req.
142. begin isEn[1] <= 1'b0; i <= i + 1'b1; end
143.
144. 6: // Repeat 512 times
145. if( C1 == 10'd511 ) begin C1 <= 16'd0; i <= i + 1'b1; end
146. else begin C1 <= C1 + 1'b1; i <= 4'd3; end
147.
148. /********/
149.
150. 7,8: // Read 1st and 2nd byte CRC
151. if( iDone ) begin D3 <= iData; isCall[0] <= 1'b0; i <= i + 1'b1; end
152. else isCall[0] <= 1'b1;
153.
154. 9: // Disable cs
155. begin rCS <= 1'b1; i <= i + 1'b1; end
156.
157. 10: // Send free clock
158. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
159. else begin isCall[0] <= 1'b1; D1 <= 8'hFF; end
160.
161. 11: // Ready OK code
162. begin D2 <= CMD17OK; i <= i + 1'b1; end
163.
164. 12: // Disable cs, generate done signal
165. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
166.
167. 13:
168. begin isDone <= 1'b0; i <= 4'd0; end
169.
170. endcase
以上内容为命令CMD17。
171. else if( iCall[1] ) // cmd1
172. case( i )
173.
174. 0: // Enable cs, prepare Cmd1
175. begin rCS <= 1'b0; D4 <= { 8'h41,32'd0,8'hff }; i <= i + 1'b1; end
176.
177. 1: // Try 100 times, ready error code.
178. if( C1 == 10'd100 ) begin D2 <= CMD1ERR; C1 <= 16'd0; i <= 4'd5; end
179. else if( iDone && iData != 8'h00) begin isCall[1]<= 1'b0; C1 <= C1 + 1'b1; end
180. else if( iDone && iData == 8'h00 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
181. else isCall[1] <= 1'b1;
182.
183. 2: // Disable cs
184. begin rCS <= 1'b1; i <= i + 1'b1; end
185.
186. 3: // Send free clock
187. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
188. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
189.
190. /******************/
191.
192. 4: // Disable cs, ready OK code.
193. begin D2 <= CMD1OK; i <= i + 1'b1; end
194.
195. 5: // Disable cs, generate done signal
196. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
197.
198. 6:
199. begin isDone <= 1'b0; i <= 4'd0; end
200.
201. endcase
以上内容为命令CMD1。
202. else if( iCall[0] ) // cmd0
203. case( i )
204.
205. 0: // Disable cs, prepare Cmd0
206. begin rCS <= 1'b1; D4 <= {8'h40, 32'd0, 8'h95}; i <= i + 1'b1; end
207.
208. 1: // Wait 1MS for warm up;
209. if( C1 == T1MS -1) begin C1 <= 16'd0; i <= i + 1'b1; end
210. else begin C1 <= C1 + 1'b1; end
211.
212. 2: // Send 80 free clock
213. if( C1 == 10'd10 ) begin C1 <= 16'd0; i <= i + 1'b1; end
214. else if( iDone ) begin isCall[0] <= 1'b0; C1 <= C1 + 1'b1; end
215. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
216.
217. 3: // Enable cs
218. begin rCS <= 1'b0; i <= i + 1'b1; end
219.
220. 4: // Try 200 time, ready error code.
221. if( C1 == 10'd200 ) begin D2 <= CMD0ERR; C1 <= 16'd0; i <= 4'd8; end
222. else if( iDone && iData != 8'h01) begin isCall[1] <= 1'b0; C1 <= C1 + 1'b1; end
223. else if( iDone && iData == 8'h01 ) begin isCall[1] <= 1'b0; C1 <= 16'd0; i <= i + 1'b1; end
224. else isCall[1] <= 1'b1;
225.
226. 5: // Disable cs
227. begin rCS <= 1'b1 ; i <= i + 1'b1; end
228.
229. 6: // Send free clock
230. if( iDone ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
231. else begin isCall[0] <= 1'b1; D1 <= 8'hff; end
232.
233. 7: // Disable cs, ready OK code
234. begin D2 <= CMD0OK; i <= i + 1'b1; end
235.
236. 8: // Disbale cs, generate done signal
237. begin rCS <= 1'b1; isDone <= 1'b1; i <= i + 1'b1; end
238.
239. 9:
240. begin isDone <= 1'b0; i <= 4'd0; end
241.
242. endcase
243.
以上内容为命令CMD0。
244. assign SD_NCS = rCS;
245. assign oDone = isDone;
246. assign oTag = D2;
247. assign oEn = isEn;
248. assign oDataFF = D3;
249. assign oCall = isCall;
250. assign oAddr = D4;
251. assign oData = D1;
252.
253. endmodule
以上内容为相关的输出驱动声明。
sdcard_basemod.v
该模块为SD卡基础模块,连线部署请参考图24.11。
1. module sdcard_basemod
2. (
3. input CLOCK, RESET,
4. input SD_DOUT,
5. output SD_CLK,
6. output SD_DI,
7. output SD_NCS,
8.
9. input [3:0]iCall,
10. output oDone,
11. input [22:0]iAddr,
12. output [7:0]oTag,
13.
14. input [1:0]iEn,
15. input [7:0]iData,
16. output [7:0]oData
17. );
18. wire [1:0]EnU1;
19. wire [7:0]DataFFU1;
20. wire [1:0]CallU1;
21. wire [47:0]AddrU1;
22. wire [7:0]DataU1;
23.
24. sdcard_ctrlmod U1
25. (
26. .CLOCK( CLOCK ),
27. .RESET( RESET ),
28. .SD_NCS( SD_NCS ), // > top
29. .iCall( iCall ), // < top
30. .oDone( oDone ), // < top
31. .iAddr( iAddr ), // < top
32. .oTag( oTag ), // > top
33. .oEn( EnU1 ), // > U2 & U3
34. .iDataFF( DataFFU2 ), // < U2
35. .oDataFF( DataFFU1 ), // > U3
36. .oCall( CallU1 ), // > U4
37. .iDone( DoneU4 ), // < U4
38. .oAddr( AddrU1 ), // > U4
39. .iData( DataU4 ), // < U4
40. .oData( DataU1 ) // > U4
41. );
42.
43. wire [7:0]DataFFU2;
44.
45. fifo_savemod U2
46. (
47. .CLOCK ( CLOCK ),
48. .RESET( RESET ),
49. .iEn ( {iEn[1],EnU1[0]} ), // < top & U1
50. .iData ( iData ), // < top
51. .oData ( DataFFU2 ), // > U1
52. .oTag ()
53. );
54.
55. fifo_savemod U3
56. (
57. .CLOCK ( CLOCK ),
58. .RESET( RESET ),
59. .iEn ( {EnU1[1],iEn[0]} ), // < top & U1
60. .iData ( DataFFU1 ), // < U1
61. .oData ( oData ), // > top
62. .oTag ()
63. );
64.
65. wire DoneU4;
66. wire [7:0]DataU4;
67.
68. sdcard_funcmod U4
69. (
70. .CLOCK( CLOCK ),
71. .RESET( RESET ),
72. .SD_CLK( SD_CLK ), // > top
73. .SD_DOUT( SD_DOUT ), // < top
74. .SD_DI( SD_DI ), // > top
75. .iCall( CallU1 ), // < U1
76. .oDone( DoneU4 ), // > U1
77. .iAddr( AddrU1 ), // < U1
78. .iData( DataU1 ), // < U1
79. .oData( DataU4 ) // > U1
80. );
81.
82. endmodule
以上内容,读者自己看着办吧,笔者犯懒了。
sdcard_demo.v
图24.16 实验二十四的建模图。
图24.16是实验二十四的建模图,右边是SD卡基础模块,右边则是调用该模块的核心程序。核心程序先初始化SD卡,期间也将反馈信息经由TXD发送出去。再者,它将512个字节写入SD卡,又从中读出,然后经由TXD发送出去。具体内容让我们来看代码吧:
1. module sdcard_demo
2. (
3. input CLOCK,RESET,
4. output SD_NCS,
5. output SD_CLK,
6. input SD_DOUT,
7. output SD_DI,
8. output TXD
9. );
以上内容为相关的出入端声明。
10. wire DoneU1;
11. wire [7:0]TagU1;
12. wire [7:0]DataU1;
13.
14. sdcard_basemod U1
15. (
16. .CLOCK( CLOCK ),
17. .RESET( RESET ),
18. .SD_DOUT( SD_DOUT ),
19. .SD_CLK( SD_CLK ),
20. .SD_DI( SD_DI ),
21. .SD_NCS( SD_NCS ),
22. .iCall( isCall ),
23. .oDone( DoneU1 ),
24. .iAddr( D1 ),
25. .oTag( TagU1 ),
26. /**********/
27. .iEn( isEn ),
28. .iData( D2 ),
29. .oData( DataU1 )
30. );
31.
以上内容为SD卡基础模块实例化,其中isCall驱动iCall,D1驱动iAddr,isEn驱动iEn,D2驱动iData。
32. parameter B115K2 = 11'd434, TXFUNC = 6'd16;
33.
34. reg [5:0]i,Go;
35. reg [10:0]C1,C2;
36. reg [22:0]D1;
37. reg [7:0]D2;
38. reg [10:0]T;
39. reg [3:0]isCall;
40. reg [1:0]isEn;
41. reg rTXD;
42.
43. always @ ( posedge CLOCK or negedge RESET )
44. if( !RESET )
45. begin
46. { i,Go } <= { 6'd0,6'd0 };
47. { C1,C2 } <= { 11'd0,11'd0 };
48. { D1,D2,T } <= { 23'd0,8'd0,11'd0 };
49. { isCall,isEn } <= { 4'd0,2'd0 };
50. rTXD <= 1'b1;
51. end
52. else
以上内容为相关的寄存器声明还有复位操作,当然也包括波特率的常量声明还有伪函数入口。
53. case( i )
54.
55. 0: // cmd0
56. if( DoneU1 ) begin isCall[0] <= 1'b0; i <= i + 1'b1; end
57. else begin isCall[0] <= 1'b1; end
58.
59. 1:
60. begin T <= { 2'b11, TagU1, 1'b0 }; i <= TXFUNC; Go <= i + 1'b1; end
61.
62. /********************/
63.
步骤0执行CMD0,然后步骤1反馈执行结果。
64. 2: // cmd1
65. if( DoneU1 ) begin isCall[1] <= 1'b0; i <= i + 1'b1; end
66. else begin isCall[1] <= 1'b1; end
67.
68. 3:
69. begin T <= { 2'b11, TagU1, 1'b0 }; i <= TXFUNC; Go <= i + 1'b1; end
70.
71. /*********************/
72.
步骤2执行CMD1,然后步骤3反馈执行结果。
73. 4: // write data to fifo
74. begin isEn[1] <= 1'b1; i <= i + 1'b1; end
75.
76. 5:
77. begin isEn[1] <= 1'b0; i <= i + 1'b1; end
78.
79. 6:
80. if( C2 == 511 ) begin C2 <= 11'd0; i <= i + 1'b1; end
81. else begin D2 <= D2 + 1'b1; C2 <= C2 + 1'b1; i <= 6'd4; end
82.
83. /**************/
84.
步骤4~6将数据00~FF写入FIFO两遍。
85. 7: // cmd24
86. if( DoneU1 ) begin isCall[3] <= 1'b0; i <= i + 1'b1; end
87. else begin isCall[3] <= 1'b1; D1 <= 23'd0; end
88.
89. 8:
90. begin T <= { 2'b11, TagU1, 1'b0 }; i <= TXFUNC; Go <= i + 1'b1; end
91.
92. /***************/
93.
步骤7执行CMD24,写入地址为23’d0。步骤8反馈执行结果。
94. 9: // cmd17
95. if( DoneU1 ) begin isCall[2] <= 1'b0; i <= i + 1'b1; end
96. else begin isCall[2] <= 1'b1; D1 <= 23'd0; end
97.
98. 10:
99. begin T <= { 2'b11, TagU1, 1'b0 }; i <= TXFUNC; Go <= i + 1'b1; end
100.
101. /****************/
102.
步骤9执行CMD17,步骤10则反馈执行结果。
103. 11: // Read data from fifo
104. begin isEn[0] <= 1'b1; i <= i + 1'b1; end
105.
106. 12:
107. begin isEn[0] <= 1'b0; i <= i + 1'b1; end
108.
109. 13:
110. begin T <= { 2'b11, DataU1, 1'b0 }; i <= TXFUNC; Go <= i + 1'b1; end
111.
112. 14:
113. if( C2 == 511 ) begin C2 <= 11'd0; i <= i + 1'b1; end
114. else begin C2 <= C2 + 1'b1; i <= 6'd11; end
115.
116. 15:
117. i <= i;
118.
119. /****************/
120.
步骤11~14从FIFO哪里读出数据512次,然后再经由TXD发送出去。
121. 16,17,18,19,20,21,22,23,24,25,26:
122. if( C1 == B115K2 -1 ) begin C1 <= 11'd0; i <= i + 1'b1; end
123. else begin rTXD <= T[i - 16]; C1 <= C1 + 1'b1; end
124.
125. 27:
126. i <= Go;
127.
128. endcase
129.
130. assign TXD = rTXD;
131.
132. endmodule
步骤16~27是发送一帧数据的伪函数。综合完毕,插入版本V1.×的SD卡,例如笔者手上 IProc制,容量为256MB的SD卡,然后下载程序。演示过程如下:
A2 // CMD0 执行成功
A4 // CMD1 执行成功
A6 // CMD24 执行成功
A8 // CMD17 执行成功
00~FF // 读出数据 0~255
00~FF // 读出数据 256~511
图24.17 SD卡的内容。
为了验证SD卡是否成功写入 00~FF 两遍,笔者稍微瞧瞧 SD卡的内容 ... 如图24.17所示,地址0x00~0xF0(0~255)的内容是 00~FF,地址0x0100~0x01F0(256~511)的内容也是 00~FF。
细节一:完整的个体模块
虽然本实验的SD卡基础模块已经就绪,不过SD卡的前提条件必须是版本SDV1.×,还有健康的硬件。嘛,SD卡基础模块傻是傻了一点,不过它还可以继续扩展。