• 堆排序 Heap Sort


    堆排序 Heap Sort

    堆排序 Heap Sort

      堆排序是一种选择排序,其时间复杂度为O(nlogn)。

    堆的定义

      n个元素的序列{k1,k2,…,kn}当且仅当满足下列关系之一时,称之为堆。

      情形1:k<= k2i 且k<= k2i+1 最小化堆小顶堆

      情形2:k>= k2i 且k>= k2i+1 (化堆大顶堆

      其中i=1,2,…,n/2向下取整;

         

                     

      若将和此序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。

      由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。

      例如,下列两个序列为堆,对应的完全二叉树如图:

      

      若在输出堆顶的最小值之后,使得剩余n-1个元素的序列重又建成一个堆,则得到n个元素的次小值。如此反复执行,便能得到一个有序序列,这个过程称之为堆排序

      堆排序(Heap Sort)只需要一个记录元素大小的辅助空间(供交换用),每个待排序的记录仅占有一个存储空间。

    堆的存储

      一般用数组来表示堆,若根结点存在序号0处, i结点的父结点下标就为(i-1)/2。i结点的左右子结点下标分别为2*i+1和2*i+2。

      (注:如果根结点是从1开始,则左右孩子结点分别是2i和2i+1。)

      如第0个结点左右子结点下标分别为1和2。

      如最大化堆如下:

       

      左图为其存储结构,右图为其逻辑结构。

    堆排序的实现

      实现堆排序需要解决两个问题:

        1.如何由一个无序序列建成一个堆?

        2.如何在输出堆顶元素之后,调整剩余元素成为一个新的堆?

      先考虑第二个问题,一般在输出堆顶元素之后,视为将这个元素排除,然后用表中最后一个元素填补它的位置,自上向下进行调整:首先将堆顶元素和它的左右子树的根结点进行比较,把最小的元素交换到堆顶;然后顺着被破坏的路径一路调整下去,直至叶子结点,就得到新的堆。

      我们称这个自堆顶至叶子的调整过程为“筛选”。

      从无序序列建立堆的过程就是一个反复“筛选”的过程。

    构造初始堆

      初始化堆的时候是对所有的非叶子结点进行筛选。

      最后一个非终端元素的下标是[n/2]向下取整,所以筛选只需要从第[n/2]向下取整个元素开始,从后往前进行调整。

      比如,给定一个数组,首先根据该数组元素构造一个完全二叉树。

      然后从最后一个非叶子结点开始,每次都是从父结点、左孩子、右孩子中进行比较交换,交换可能会引起孩子结点不满足堆的性质,所以每次交换之后需要重新对被交换的孩子结点进行调整。

    进行堆排序

      有了初始堆之后就可以进行排序了。

      堆排序是一种选择排序。建立的初始堆为初始的无序区。

      排序开始,首先输出堆顶元素(因为它是最值),将堆顶元素和最后一个元素交换,这样,第n个位置(即最后一个位置)作为有序区,前n-1个位置仍是无序区,对无序区进行调整,得到堆之后,再交换堆顶和最后一个元素,这样有序区长度变为2。。。

      不断进行此操作,将剩下的元素重新调整为堆,然后输出堆顶元素到有序区。每次交换都导致无序区-1,有序区+1。不断重复此过程直到有序区长度增长为n-1,排序完成。

    堆排序实例

       首先,建立初始的堆结构如图:

      

      然后,交换堆顶的元素和最后一个元素,此时最后一个位置作为有序区(有序区显示为黄色),然后进行其他无序区的堆调整,重新得到大顶堆后,交换堆顶和倒数第二个元素的位置……

      

      重复此过程:

      

     

      最后,有序区扩展完成即排序完成:

      

     

      由排序过程可见,若想得到升序,则建立大顶堆,若想得到降序,则建立小顶堆

    代码

      假设排列的元素为整型,且元素的关键字为其本身。

      因为要进行升序排列,所以用大顶堆。

      根结点从0开始,所以i结点的左右孩子结点的下标为2i+1和2i+2。

     

    Heap Sort

     

    堆排序分析

      堆排序方法对记录数较少的文件并不值得提倡,但对n较大的文件还是很有效的。因为其运行时间主要耗费在建初始堆和调整建新堆时进行的反复“筛选”上。

      堆排序在最坏的情况下,其时间复杂度也为O(nlogn)。相对于快速排序来说,这是堆排序的最大优点。此外,堆排序仅需一个记录大小的供交换用的辅助存储空间。

      参考资料:

      严蔚敏《数据结构》

      http://www.cnblogs.com/dolphin0520/archive/2011/10/06/2199741.html

      http://blog.csdn.net/morewindows/article/details/6709644

  • 相关阅读:
    [ExtJS5学习笔记]第十一节 Extjs5MVVM模式下系统登录实例
    PS 滤镜算法原理——曝光过度
    PS 滤镜算法原理 ——马赛克
    OpenCV——彩色图像转成灰度图像
    [ExtJS5学习笔记]第十节 Extjs5新增特性之ViewModel和DataBinding
    【翻译】EXTJS 编码风格指南与实例
    【翻译】Ext JS最新技巧——2014-8-13
    [ExtJS5学习笔记]第九节 Extjs5的mvc与mvvm框架结构简介
    [ExtJS5学习笔记]第八节 Extjs5的Ext.toolbar.Toolbar工具条组件及其应用
    [ExtJS5学习笔记]第七节 Extjs5的组件components及其模板事件方法学习
  • 原文地址:https://www.cnblogs.com/aliceluorong/p/7563138.html
Copyright © 2020-2023  润新知