人脸矫正有几个问题。
1.歪头:
2.侧脸:
3.半边脸:缺失另外半边脸,要寻找其他的解决方案。
大多数情况下,截取到的人脸是包含歪头和侧脸的现象的。这两个问题,可以同时通过仿射变换来矫正。
但是要注意,侧脸,是缺少一部分脸部信息的。
人脸矫正,对歪头的正确度提高有帮助,对侧脸就一般了。
思路:
1.之前步骤已经在每张人脸上找到5个特征;
2.测量 正面脸 的五点对应坐标 pts_dst(这是测量出来的,重要的是5点的位置相对关系);
3.每张脸的5个点坐标 pts_src,其中的鼻子坐标要设置成和2中鼻子坐标相同,其他坐标点按比例换算;
4.这两组左边,估计矫正的单应性矩阵(就是仿射变换矩阵,歪脸 to 正脸的变换矩阵);
5.然后对人脸做仿射变换,得到矫正后的图。
代码:
import tensorflow as tf import numpy as np import cv2 import detect_face import matplotlib.pyplot as plt import math from scipy import misc img = misc.imread('001.jpg') sess = tf.Session() pnet, rnet, onet = detect_face.create_mtcnn(sess, None) # pnet, rnet, onet are 3 funtions minsize = 20 threshold = [0.6, 0.7, 0.7] factor = 0.709 df_result, df_points_result = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) # df_points_result is faceNumber X 10 # need transpose to 10 X faceNumber df_points_result = np.transpose(df_points_result) vec_vec_points = [] for subPoints in df_points_result: # subPoints: [x1,x2,x3,x4,x5,y1,y2,y3,y4,y5] # image axis, so convert nose to (48,48) # Points of small faces are too close to compute correct Homography Matrix. # So, scale points. deltaX = 48-subPoints[2] deltaY = 48-subPoints[7] vec_vec_points.append([[subPoints[0]+deltaX, subPoints[5]+deltaY], [subPoints[1]+deltaX, subPoints[6]+deltaY], [subPoints[2]+deltaX, subPoints[7]+deltaY], [subPoints[3]+deltaX, subPoints[8]+deltaY], [subPoints[4]+deltaX, subPoints[9]+deltaY]]) n_face = df_result.shape[0] print('detected face number: {}'.format(n_face)) print(df_result) plt.figure('faces') i = 0 plt_nrow = n_face / 5 plt_nrow = plt_nrow + int(n_face != plt_nrow * 5) plt_ncol = 5 crop_face = [] crop_face_adjust = [] size_img = (96,96) pts_dst = np.array([[29.0,24.0],[67.0,24.0],[48.0,48.0],[28.0,62.0],[68.0,62.0]]) # measure for subfaceRec in df_result: i = i + 1 subfaceRec = subfaceRec.astype(int) img_a_face = img[subfaceRec[1]:subfaceRec[3], subfaceRec[0]:subfaceRec[2]] crop_face.append(img_a_face) # adjust image pts_src = np.array(vec_vec_points[i-1]) H, _ = cv2.findHomography(pts_src, pts_dst) img_a_face_adjust = cv2.warpPerspective(img_a_face, H, (img_a_face.shape[1]+30, img_a_face.shape[0]+30)) crop_face_adjust.append(img_a_face_adjust) # resize image img_a_face = cv2.resize(img_a_face, size_img, interpolation=cv2.INTER_CUBIC) # display and show print('plt_nrow:{}, plt_ncol:{}, i:{}'.format(plt_nrow, plt_ncol, i)) plt.subplot(plt_nrow, plt_ncol, i) plt.imshow(img_a_face) cv2.rectangle(img, (subfaceRec[0], subfaceRec[1]), (subfaceRec[2], subfaceRec[3]), (0, 255, 0), 2) # show face adjust i = 0 plt.figure('faces_adjust') for sub_img_ad in crop_face_adjust: timg = cv2.resize(sub_img_ad, size_img, interpolation=cv2.INTER_CUBIC) i = i+1 plt.subplot(plt_nrow, plt_ncol, i) plt.imshow(timg) # draw points plt.figure('img') for subPoints in df_points_result: # subPoints: [x1,x2,x3,x4,x5,y1,y2,y3,y4,y5] cv2.circle(img, (subPoints[0], subPoints[5]), 2, (255, 0, 0), -1) # Red left eye cv2.circle(img, (subPoints[1], subPoints[6]), 2, (0, 0, 255), -1) # Blue right eye cv2.circle(img, (subPoints[2], subPoints[7]), 2, (0, 255, 0), -1) # Green nose cv2.circle(img, (subPoints[3], subPoints[8]), 2, (255, 255, 0), -1) # yellow left mouse cv2.circle(img, (subPoints[4], subPoints[9]), 2, (0, 255, 255), -1) # cyan right mouse plt.imshow(img) plt.show() sess.close()
结果:
问题:
效果不是很理想,或许只使用旋转矩阵,效果更好吧。
毕竟侧脸情况,要考虑其他更有效的算法。
值得一提的是,FaceNet对于输入的人脸,没有矫正的要求。