• 莫烦TensorFlow_11 MNIST优化使用CNN


    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #number 1 to 10 data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    def compute_accuracy(v_xs, v_ys):
      global prediction
      y_pre = sess.run(prediction, feed_dict={xs:v_xs, keep_prob:1})
      correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      result = sess.run(accuracy, feed_dict={xs:v_xs, ys:v_ys, keep_prob:1})
      return result
    
    
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1) # initial variables with normal distribution
      return tf.Variable(initial)
      
    
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
    
    
    def conv2d(x, W):
      #strides [1, x_movement, y_movement, 1]
      #Must have strides[0] = strides[3] = 1
      return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding = 'SAME')
    
    
    def max_pool_2x2(x):
      #strides [1, x_movement, y_movement, 1]
      #Must have strides[0] = strides[3] = 1
      return tf.nn.max_pool(x, ksize=[1,2,2,1], strides = [1,2,2,1], padding = 'SAME')
      
    
    #define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 784])
    ys = tf.placeholder(tf.float32, [None, 10])
    keep_prob = tf.placeholder(tf.float32)
    x_image = tf.reshape(xs, [-1, 28, 28, 1])
    #print(x_image.shape) #[n_sample, 28, 28, 1]
    
    
    ## conv1 layer ##
    W_conv1 = weight_variable([5,5,1,32])#patch 5x5, in in size 1, out size 32
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
    h_pool1 = max_pool_2x2(h_conv1)# output size 14x14x32
    
    ## conv2 layer ##
    W_conv2 = weight_variable([5,5,32, 64])#patch 5x5, in in size 32, out size 64
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
    h_pool2 = max_pool_2x2(h_conv2)# output size 7x7x64
    
    ## func1 layer ##
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
     # [n_sample, 7,7,64] ->> [n_sample, 7*7*64]
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    ## func2 layer ##
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    
    
    # the error between prediction and real data
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
    					        reduction_indices=[1]))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    
    for i in range(1000):
      batch_xs, batch_ys = mnist.train.next_batch(100)
      sess.run(train_step, feed_dict = {xs:batch_xs, ys:batch_ys, keep_prob:0.8})
      if i% 50 == 0:
        print(compute_accuracy(mnist.test.images, mnist.test.labels))
    

      

    两层卷积层

    训练速度慢了,但是精度提高了

  • 相关阅读:
    Linux-OpenSUSE折腾-1(Qt安装,Chrome安装)
    Qt HUD(平显)演示程序绿色版
    你所不知道的按位运算
    Linux-Shell脚本编程-学习-8-函数
    Linux-Shell脚本编程-学习-7-总结前面开启后面的学习
    Linux-Shell脚本编程-学习-6-Shell编程-使用结构化命令-文件比较-case编程
    Linux-Shell脚本编程-学习-5-Shell编程-使用结构化命令-if-then-else-elif
    Linux-Shell脚本编程-学习-4-Shell编程-操作数字-加减乘除计算
    Linux-Shell脚本编程-学习-3-Shell编程-shell脚本基本格式
    selenium 总结篇,常见方法和页面元素的操作
  • 原文地址:https://www.cnblogs.com/alexYuin/p/8763155.html
Copyright © 2020-2023  润新知