import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # # add layer # def add_layer(inputs, in_size, out_size,n_layer, activation_function = None): layer_name = 'layer%s' % n_layer with tf.name_scope(layer_name): with tf.name_scope('Weights'): Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') # hang lie tf.summary.histogram(layer_name + '/weights', Weights)#保存成一个直方图,bin是取值 with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name = 'b') tf.summary.histogram(layer_name + '/biases', biases)#注意histogram的路径 with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) tf.summary.histogram(layer_name + '/outputs', outputs) return outputs # #make up some data # x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise # #define placeholder # with tf.name_scope('inputs'): xs = tf.placeholder(tf.float32, [None, 1], name = 'x_input') #注意命名 ys = tf.placeholder(tf.float32, [None, 1], name = 'y_input') #add hidden layer l1 = add_layer(xs, 1, 10, n_layer = 1,activation_function = tf.nn.relu) #add output layer prediction = add_layer(l1, 10, 1, n_layer = 2, activation_function = None) #the error between prediction and real data with tf.name_scope('loss'): loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1] )) tf.summary.scalar('loss', loss)#记录operation,是存储在scaler里的 with tf.name_scope('train'): train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session() merged = tf.summary.merge_all() #所有的summary在merge以后,在一个run中就可执行 writer = tf.summary.FileWriter("logs/", sess.graph) #定义writer #import step sess.run(tf.global_variables_initializer() ) # # Session # for i in range(1000): sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) if i % 50 == 0: result = sess.run(merged, # 否则要一个个run summary。 feed_dict = {xs:x_data, ys:y_data}) writer.add_summary(result, i)#按序列写入结果 print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))