• 【508】NLP实战系列(五)—— 通过 SimpleRNN 来做分类


    参考:SimpleRNN层

    1. 语法

    keras.layers.GRU(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)
    

    2. 参数

    • units:输出维度

    • activation:激活函数,为预定义的激活函数名(参考激活函数

    • use_bias: 布尔值,是否使用偏置项

    • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • recurrent_initializer:循环核的初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • kernel_regularizer:施加在权重上的正则项,为Regularizer对象

    • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象

    • recurrent_regularizer:施加在循环核上的正则项,为Regularizer对象

    • activity_regularizer:施加在输出上的正则项,为Regularizer对象

    • kernel_constraints:施加在权重上的约束项,为Constraints对象

    • recurrent_constraints:施加在循环核上的约束项,为Constraints对象

    • bias_constraints:施加在偏置上的约束项,为Constraints对象

    • dropout:0~1之间的浮点数,控制输入线性变换的神经元断开比例

    • recurrent_dropout:0~1之间的浮点数,控制循环状态的线性变换的神经元断开比例

    • 其他参数参考Recurrent的说明

    3. 相关说明

    • SimpleRNN takes inputs of shape (batch_size, timesteps, input_features).

    • Like all recurrent layers in Keras, SimpleRNN can be run in two different modes: it can return either the full sequences of successive outputs for each timestep (a 3D tensor of shape (batch_size, timesteps, output_features)), or it can return only the last output for each input sequence (a 2D tensor of shape (batch_size, output_features)). These two modes are controlled by the return_sequences constructor argument. Let's take a look at an example:

       当将 SimpleRNN 叠加的时候,return_sequences 就有用了。

    model = Sequential()
    model.add(Embedding(10000, 32))
    model.add(SimpleRNN(32, return_sequences=True))
    model.add(SimpleRNN(32, return_sequences=True))
    model.add(SimpleRNN(32, return_sequences=True))
    model.add(SimpleRNN(32))  # This last layer only returns the last outputs.
    model.summary()
    

      outputs:

    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    embedding_3 (Embedding)      (None, None, 32)          320000    
    _________________________________________________________________
    simple_rnn_3 (SimpleRNN)     (None, None, 32)          2080      
    _________________________________________________________________
    simple_rnn_4 (SimpleRNN)     (None, None, 32)          2080      
    _________________________________________________________________
    simple_rnn_5 (SimpleRNN)     (None, None, 32)          2080      
    _________________________________________________________________
    simple_rnn_6 (SimpleRNN)     (None, 32)                2080      
    =================================================================
    Total params: 328,320
    Trainable params: 328,320
    Non-trainable params: 0
    _________________________________________________________________

    4. 具体实现 

    4.1 加载数据
    from keras.datasets import imdb
    from keras.preprocessing import sequence
    
    max_features = 10000  # number of words to consider as features
    maxlen = 500  # cut texts after this number of words (among top max_features most common words)
    batch_size = 32
    
    print('Loading data...')
    (input_train, y_train), (input_test, y_test) = imdb.load_data(num_words=max_features)
    print(len(input_train), 'train sequences')
    print(len(input_test), 'test sequences')
    
    print('Pad sequences (samples x time)')
    input_train = sequence.pad_sequences(input_train, maxlen=maxlen)
    input_test = sequence.pad_sequences(input_test, maxlen=maxlen)
    print('input_train shape:', input_train.shape)
    print('input_test shape:', input_test.shape)
    

      output:

    Loading data...
    25000 train sequences
    25000 test sequences
    Pad sequences (samples x time)
    input_train shape: (25000, 500)
    input_test shape: (25000, 500)

    4.2 数据训练 

    from keras.layers import Dense
    
    model = Sequential()
    model.add(Embedding(max_features, 32))
    model.add(SimpleRNN(32))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
    history = model.fit(input_train, y_train,
                        epochs=10,
                        batch_size=128,
                        validation_split=0.2)
    

      outputs:

    Train on 20000 samples, validate on 5000 samples
    Epoch 1/10
    20000/20000 [==============================] - 22s - loss: 0.6455 - acc: 0.6210 - val_loss: 0.5293 - val_acc: 0.7758
    Epoch 2/10
    20000/20000 [==============================] - 20s - loss: 0.4005 - acc: 0.8362 - val_loss: 0.4752 - val_acc: 0.7742
    Epoch 3/10
    20000/20000 [==============================] - 19s - loss: 0.2739 - acc: 0.8920 - val_loss: 0.4947 - val_acc: 0.8064
    Epoch 4/10
    20000/20000 [==============================] - 19s - loss: 0.1916 - acc: 0.9290 - val_loss: 0.3783 - val_acc: 0.8460
    Epoch 5/10
    20000/20000 [==============================] - 19s - loss: 0.1308 - acc: 0.9528 - val_loss: 0.5755 - val_acc: 0.7376
    Epoch 6/10
    20000/20000 [==============================] - 19s - loss: 0.0924 - acc: 0.9675 - val_loss: 0.5829 - val_acc: 0.7634
    Epoch 7/10
    20000/20000 [==============================] - 19s - loss: 0.0726 - acc: 0.9768 - val_loss: 0.5541 - val_acc: 0.7932
    Epoch 8/10
    20000/20000 [==============================] - 19s - loss: 0.0426 - acc: 0.9862 - val_loss: 0.5551 - val_acc: 0.8292
    Epoch 9/10
    20000/20000 [==============================] - 20s - loss: 0.0300 - acc: 0.9918 - val_loss: 0.5962 - val_acc: 0.8312
    Epoch 10/10
    20000/20000 [==============================] - 19s - loss: 0.0256 - acc: 0.9925 - val_loss: 0.6707 - val_acc: 0.8054
  • 相关阅读:
    Spring AOP 代理创建方式
    VS全局搜索
    uni-app中添加AES加密
    中国菜刀"连接被重置"问题解决
    Windows go get下载包失败问题解决
    搭建vulhub 漏洞环境及安装Docker和docker-compose
    DedeCMS 5.7通用重装漏洞分析
    各就各位,预备,GO!
    ARL资产灯塔系统分组资产导出脚本
    玩《巫师3》需要了解的背景知识
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/14197655.html
Copyright © 2020-2023  润新知