• 【507】NLP实战系列(四)—— 实现一个最简单的NN


      完成前三节的基础准备,就可以先撸个最简单的 NN 网络。

    1. 获取训练数据与测试数据

      按照如下代码实现,具体说明可以参见第三部分。

    from keras.datasets import imdb
    from keras import preprocessing
    
    # Number of words to consider as features
    max_features = 10000
    # Cut texts after this number of words 
    # (among top max_features most common words)
    maxlen = 20
    
    # Load the data as lists of integers.
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
    
    # This turns our lists of integers
    # into a 2D integer tensor of shape `(samples, maxlen)`
    x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
    x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)
    

    2. 网络训练   

    from keras.models import Sequential
    from keras.layers import Flatten, Dense
    
    model = Sequential()
    # We specify the maximum input length to our Embedding layer
    # so we can later flatten the embedded inputs
    model.add(Embedding(10000, 8, input_length=maxlen))
    # After the Embedding layer, 
    # our activations have shape `(samples, maxlen, 8)`.
    
    # We flatten the 3D tensor of embeddings 
    # into a 2D tensor of shape `(samples, maxlen * 8)`
    model.add(Flatten())
    
    # We add the classifier on top
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
    model.summary()
    
    history = model.fit(x_train, y_train,
                        epochs=10,
                        batch_size=32,
                        validation_split=0.2)
    

      outputs:

    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    embedding_2 (Embedding)      (None, 20, 8)             80000     
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 160)               0         
    _________________________________________________________________
    dense_1 (Dense)              (None, 1)                 161       
    =================================================================
    Total params: 80,161
    Trainable params: 80,161
    Non-trainable params: 0
    _________________________________________________________________
    Train on 20000 samples, validate on 5000 samples
    Epoch 1/10
    20000/20000 [==============================] - 2s 75us/step - loss: 0.6759 - acc: 0.6043 - val_loss: 0.6398 - val_acc: 0.6810
    Epoch 2/10
    20000/20000 [==============================] - 1s 52us/step - loss: 0.5657 - acc: 0.7428 - val_loss: 0.5467 - val_acc: 0.7206
    Epoch 3/10
    20000/20000 [==============================] - 1s 52us/step - loss: 0.4752 - acc: 0.7808 - val_loss: 0.5113 - val_acc: 0.7384
    Epoch 4/10
    20000/20000 [==============================] - 1s 52us/step - loss: 0.4263 - acc: 0.8079 - val_loss: 0.5008 - val_acc: 0.7454
    Epoch 5/10
    20000/20000 [==============================] - 1s 56us/step - loss: 0.3930 - acc: 0.8257 - val_loss: 0.4981 - val_acc: 0.7540
    Epoch 6/10
    20000/20000 [==============================] - 1s 71us/step - loss: 0.3668 - acc: 0.8394 - val_loss: 0.5013 - val_acc: 0.7534
    Epoch 7/10
    20000/20000 [==============================] - 1s 57us/step - loss: 0.3435 - acc: 0.8534 - val_loss: 0.5051 - val_acc: 0.7518
    Epoch 8/10
    20000/20000 [==============================] - 1s 60us/step - loss: 0.3223 - acc: 0.8658 - val_loss: 0.5132 - val_acc: 0.7484
    Epoch 9/10
    20000/20000 [==============================] - 2s 76us/step - loss: 0.3022 - acc: 0.8765 - val_loss: 0.5213 - val_acc: 0.7494
    Epoch 10/10
    20000/20000 [==============================] - 2s 84us/step - loss: 0.2839 - acc: 0.8860 - val_loss: 0.5302 - val_acc: 0.7468

  • 相关阅读:
    对soc-audio体系snd_soc_machine和snd_soc_dai_link简单理解
    I2S
    alsa和oss声音系统比较
    break 和 continue
    phalcon查询:单条查询,多条查询,多表查询
    phalcon: 独立的映射,字段名名别名
    phpexcel: 数据导出
    php:Mcrypt响应慢的原因解决备注
    js:s上次预览,上传图片预览,图片上传预览
    yii2: 点击编辑后,左侧的连接(a.navtab)失效,变成在新窗口打开
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/14197029.html
Copyright © 2020-2023  润新知