LSTM 是优秀的循环神经网络 (RNN) 结构,而 LSTM 在结构上也比较复杂,对 RNN 和 LSTM 还稍有疑问的朋友可以参考:Recurrent Neural Networks vs LSTM【参考李宏毅老师的讲课PPT内容】
这里我们将要使用 Keras 搭建 LSTM.Keras 封装了一些优秀的深度学习框架的底层实现,使用起来相当简洁,甚至不需要深度学习的理论知识,你都可以轻松快速的搭建你的深度学习网络,强烈推荐给刚入门深度学习的同学使用,当然我也是还没入门的那个。Keras:https://keras.io/,keras的backend有,theano,TensorFlow、CNTk,这里我使用的是 TensorFlow。
下面我们就开始搭建 LSTM & BiLSTM,实现 mnist 数据的分类。
一、加载包和定义参数
mnist 的 image 是 28*28 的 shape,我们定义 LSTM 的 input 为 (28,),将 image 一行一行地输入到 LSTM 的 cell 中,这样 time_step 就是 28,表示一个 image 有 28 行,LSTM 的 output 是 30 个。
from tensorflow import keras import mnist from keras.layers import Dense, LSTM, Bidirectional from keras.utils import to_categorical from keras.models import Sequential # parameters for LSTM nb_lstm_outputs = 30 # 输出神经元个数 nb_time_steps = 28 # 时间序列的长度 nb_input_vectors = 28 # 每个输入序列的向量维度
二、数据预处理
特别注意 label 要使用 one_hot encoding,x_train 的 shape 为 (60000, 28,28)
# data preprocessing x_train = mnist.train_images() y_train = mnist.train_labels() x_test = mnist.test_images() y_test = mnist.test_labels() # Nomalize the images x_train = (x_train / 255) - 0.5 x_test = (x_test / 255) - 0.5 # one_hot encoding y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10)
三、搭建模型 (LSTM, BiLSTM)
keras 搭建模型相当简单,只需要在 Sequential 容器中不断 add 新的 layer 就可以了。
# building model model = Sequential() model.add(LSTM(units=nb_lstm_outputs, input_shape=(nb_time_steps, nb_input_vectors))) model.add(Dense(10, activation='softmax'))
BiLSTM 模型搭建如下:具体实现方法差别不大
# building model model = Sequential() model.add( Bidirectional( LSTM( units=nb_lstm_outputs, return_sequences=True ), input_shape=(nb_time_steps, nb_input_vectors) ) ) model.add( Bidirectional( LSTM(units=nb_lstm_outputs) ) ) model.add( Dense( 10, activation='softmax' ) )
四、compile
模型 compile,指定 loss function,optimizer,metrics
# compile:loss, optimizer, metrics model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] )
五、summary
可以使用 model.summary() 来查看你的神经网络的架构和参数量等信息。
model.summary() output: _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= lstm_1 (LSTM) (None, 30) 7080 _________________________________________________________________ dense_1 (Dense) (None, 10) 310 ================================================================= Total params: 7,390 Trainable params: 7,390 Non-trainable params: 0 _________________________________________________________________
BiLSTM 结果如下:多了一层 layer
_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= bidirectional_1 (Bidirection (None, 28, 60) 14160 _________________________________________________________________ bidirectional_2 (Bidirection (None, 60) 21840 _________________________________________________________________ dense_2 (Dense) (None, 10) 610 ================================================================= Total params: 36,610 Trainable params: 36,610 Non-trainable params: 0 _________________________________________________________________
六、train
模型训练,需要指定,epochs 训练的轮次数,batch_size。
model.fit( x_train, y_train, epochs=20, batch_size=128, verbose=1 ) output: Epoch 1/20 60000/60000 [==============================] - 11s 184us/step - loss: 0.9702 - acc: 0.6919 Epoch 2/20 60000/60000 [==============================] - 9s 152us/step - loss: 0.3681 - acc: 0.8921 Epoch 3/20 60000/60000 [==============================] - 9s 143us/step - loss: 0.2505 - acc: 0.9263 Epoch 4/20 60000/60000 [==============================] - 9s 147us/step - loss: 0.1985 - acc: 0.9411 Epoch 5/20 60000/60000 [==============================] - 9s 156us/step - loss: 0.1673 - acc: 0.9508 Epoch 6/20 60000/60000 [==============================] - 10s 163us/step - loss: 0.1473 - acc: 0.9563 Epoch 7/20 60000/60000 [==============================] - 10s 162us/step - loss: 0.1311 - acc: 0.9605 Epoch 8/20 60000/60000 [==============================] - 10s 162us/step - loss: 0.1176 - acc: 0.9650 Epoch 9/20 60000/60000 [==============================] - 10s 167us/step - loss: 0.1054 - acc: 0.9688 Epoch 10/20 60000/60000 [==============================] - 10s 165us/step - loss: 0.0991 - acc: 0.9702 Epoch 11/20 60000/60000 [==============================] - 10s 164us/step - loss: 0.0899 - acc: 0.9730 Epoch 12/20 60000/60000 [==============================] - 10s 169us/step - loss: 0.0857 - acc: 0.9741 Epoch 13/20 60000/60000 [==============================] - 10s 166us/step - loss: 0.0781 - acc: 0.9758 Epoch 14/20 60000/60000 [==============================] - 10s 167us/step - loss: 0.0740 - acc: 0.9776 Epoch 15/20 60000/60000 [==============================] - 10s 172us/step - loss: 0.0697 - acc: 0.9786 Epoch 16/20 60000/60000 [==============================] - 10s 171us/step - loss: 0.0678 - acc: 0.9795 Epoch 17/20 60000/60000 [==============================] - 10s 170us/step - loss: 0.0639 - acc: 0.9798 Epoch 18/20 60000/60000 [==============================] - 10s 169us/step - loss: 0.0589 - acc: 0.9817 Epoch 19/20 60000/60000 [==============================] - 10s 172us/step - loss: 0.0597 - acc: 0.9817 Epoch 20/20 60000/60000 [==============================] - 10s 168us/step - loss: 0.0558 - acc: 0.9825
BiLSTM 结果如下:结果更好
Epoch 1/20 60000/60000 [==============================] - 46s 767us/step - loss: 0.6845 - acc: 0.7782 Epoch 2/20 60000/60000 [==============================] - 48s 799us/step - loss: 0.1843 - acc: 0.9435 Epoch 3/20 60000/60000 [==============================] - 45s 751us/step - loss: 0.1241 - acc: 0.9627 Epoch 4/20 60000/60000 [==============================] - 45s 747us/step - loss: 0.0956 - acc: 0.9712 Epoch 5/20 60000/60000 [==============================] - 46s 766us/step - loss: 0.0806 - acc: 0.9754 Epoch 6/20 60000/60000 [==============================] - 46s 771us/step - loss: 0.0667 - acc: 0.9793 Epoch 7/20 60000/60000 [==============================] - 45s 754us/step - loss: 0.0584 - acc: 0.9820 Epoch 8/20 60000/60000 [==============================] - 44s 741us/step - loss: 0.0513 - acc: 0.9835 Epoch 9/20 60000/60000 [==============================] - 45s 742us/step - loss: 0.0445 - acc: 0.9863 Epoch 10/20 60000/60000 [==============================] - 46s 767us/step - loss: 0.0419 - acc: 0.9874 Epoch 11/20 60000/60000 [==============================] - 45s 755us/step - loss: 0.0378 - acc: 0.9885 Epoch 12/20 60000/60000 [==============================] - 46s 758us/step - loss: 0.0332 - acc: 0.9894 Epoch 13/20 60000/60000 [==============================] - 45s 750us/step - loss: 0.0318 - acc: 0.9894 Epoch 14/20 60000/60000 [==============================] - 45s 756us/step - loss: 0.0279 - acc: 0.9911 Epoch 15/20 60000/60000 [==============================] - 45s 745us/step - loss: 0.0262 - acc: 0.9917 Epoch 16/20 60000/60000 [==============================] - 45s 758us/step - loss: 0.0258 - acc: 0.9916 Epoch 17/20 60000/60000 [==============================] - 47s 791us/step - loss: 0.0226 - acc: 0.9923 Epoch 18/20 60000/60000 [==============================] - 47s 791us/step - loss: 0.0223 - acc: 0.9930 Epoch 19/20 60000/60000 [==============================] - 46s 773us/step - loss: 0.0179 - acc: 0.9943 Epoch 20/20 60000/60000 [==============================] - 45s 747us/step - loss: 0.0199 - acc: 0.9935
七、evaluate
通过 model.evaluate() 来实现。
score = model.evaluate(x_test, y_test, batch_size=128, verbose=1) print(score) output: 10000/10000 [==============================] - 0s 49us/step [0.06827456439994276, 0.9802]
BiLSTM 结果:更好
10000/10000 [==============================] - 2s 250us/step [0.055307343754824254, 0.9838]