• 【482】Keras 实现 LSTM & BiLSTM


    参考:Keras 实现 LSTM

    参考:Keras-递归层Recurrent官方说明

    参考:GitHub - Keras LSTM

    参考:GitHub - Keras BiLSTM


      LSTM 是优秀的循环神经网络 (RNN) 结构,而 LSTM 在结构上也比较复杂,对 RNN 和 LSTM 还稍有疑问的朋友可以参考:Recurrent Neural Networks vs LSTM【参考李宏毅老师的讲课PPT内容】

      这里我们将要使用 Keras 搭建 LSTM.Keras 封装了一些优秀的深度学习框架的底层实现,使用起来相当简洁,甚至不需要深度学习的理论知识,你都可以轻松快速的搭建你的深度学习网络,强烈推荐给刚入门深度学习的同学使用,当然我也是还没入门的那个。Keras:https://keras.io/,keras的backend有,theano,TensorFlow、CNTk,这里我使用的是 TensorFlow。

      下面我们就开始搭建 LSTM & BiLSTM,实现 mnist 数据的分类。

    一、加载包和定义参数

      mnist 的 image 是 28*28 的 shape,我们定义 LSTM 的 input 为 (28,),将 image 一行一行地输入到 LSTM 的 cell 中,这样 time_step 就是 28,表示一个 image 有 28 行,LSTM 的 output 是 30 个。

    from tensorflow import keras
    import mnist
    from keras.layers import Dense, LSTM, Bidirectional
    from keras.utils import to_categorical
    from keras.models import Sequential
    
    # parameters for LSTM
    nb_lstm_outputs = 30    # 输出神经元个数
    nb_time_steps = 28    # 时间序列的长度
    nb_input_vectors = 28    # 每个输入序列的向量维度

    二、数据预处理

      特别注意 label 要使用 one_hot encoding,x_train 的 shape 为 (60000, 28,28)

    # data preprocessing
    x_train = mnist.train_images()
    y_train = mnist.train_labels()
    x_test = mnist.test_images()
    y_test = mnist.test_labels()
    
    # Nomalize the images
    x_train = (x_train / 255) - 0.5
    x_test = (x_test / 255) - 0.5
    
    # one_hot encoding
    y_train = to_categorical(y_train, num_classes=10)
    y_test = to_categorical(y_test, num_classes=10)

    三、搭建模型 (LSTM, BiLSTM)

      keras 搭建模型相当简单,只需要在 Sequential 容器中不断 add 新的 layer 就可以了。

    # building model
    model = Sequential()
    model.add(LSTM(units=nb_lstm_outputs, input_shape=(nb_time_steps, nb_input_vectors)))
    model.add(Dense(10, activation='softmax'))

      BiLSTM 模型搭建如下:具体实现方法差别不大

    # building model
    model = Sequential()
    
    model.add(
        Bidirectional(
            LSTM(
                units=nb_lstm_outputs, 
                return_sequences=True
            ), 
            input_shape=(nb_time_steps, nb_input_vectors)
        )
    )
    
    model.add(
        Bidirectional(
            LSTM(units=nb_lstm_outputs)
        )
    )
    
    model.add(
        Dense(
            10, 
            activation='softmax'
        )
    )

    四、compile

      模型 compile,指定 loss function,optimizer,metrics

    # compile:loss, optimizer, metrics
    model.compile(
        loss='categorical_crossentropy',
        optimizer='adam',
        metrics=['accuracy']
    )

    五、summary

      可以使用 model.summary() 来查看你的神经网络的架构和参数量等信息。

    model.summary()
    
    output:
    
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    lstm_1 (LSTM)                (None, 30)                7080      
    _________________________________________________________________
    dense_1 (Dense)              (None, 10)                310       
    =================================================================
    Total params: 7,390
    Trainable params: 7,390
    Non-trainable params: 0
    _________________________________________________________________

      BiLSTM 结果如下:多了一层 layer

    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    bidirectional_1 (Bidirection (None, 28, 60)            14160     
    _________________________________________________________________
    bidirectional_2 (Bidirection (None, 60)                21840     
    _________________________________________________________________
    dense_2 (Dense)              (None, 10)                610       
    =================================================================
    Total params: 36,610
    Trainable params: 36,610
    Non-trainable params: 0
    _________________________________________________________________

    六、train

      模型训练,需要指定,epochs 训练的轮次数,batch_size。

    model.fit(
        x_train,
        y_train,
        epochs=20,
        batch_size=128,
        verbose=1
    )
    
    output:
    
    Epoch 1/20
    60000/60000 [==============================] - 11s 184us/step - loss: 0.9702 - acc: 0.6919
    Epoch 2/20
    60000/60000 [==============================] - 9s 152us/step - loss: 0.3681 - acc: 0.8921
    Epoch 3/20
    60000/60000 [==============================] - 9s 143us/step - loss: 0.2505 - acc: 0.9263
    Epoch 4/20
    60000/60000 [==============================] - 9s 147us/step - loss: 0.1985 - acc: 0.9411
    Epoch 5/20
    60000/60000 [==============================] - 9s 156us/step - loss: 0.1673 - acc: 0.9508
    Epoch 6/20
    60000/60000 [==============================] - 10s 163us/step - loss: 0.1473 - acc: 0.9563
    Epoch 7/20
    60000/60000 [==============================] - 10s 162us/step - loss: 0.1311 - acc: 0.9605
    Epoch 8/20
    60000/60000 [==============================] - 10s 162us/step - loss: 0.1176 - acc: 0.9650
    Epoch 9/20
    60000/60000 [==============================] - 10s 167us/step - loss: 0.1054 - acc: 0.9688
    Epoch 10/20
    60000/60000 [==============================] - 10s 165us/step - loss: 0.0991 - acc: 0.9702
    Epoch 11/20
    60000/60000 [==============================] - 10s 164us/step - loss: 0.0899 - acc: 0.9730
    Epoch 12/20
    60000/60000 [==============================] - 10s 169us/step - loss: 0.0857 - acc: 0.9741
    Epoch 13/20
    60000/60000 [==============================] - 10s 166us/step - loss: 0.0781 - acc: 0.9758
    Epoch 14/20
    60000/60000 [==============================] - 10s 167us/step - loss: 0.0740 - acc: 0.9776
    Epoch 15/20
    60000/60000 [==============================] - 10s 172us/step - loss: 0.0697 - acc: 0.9786
    Epoch 16/20
    60000/60000 [==============================] - 10s 171us/step - loss: 0.0678 - acc: 0.9795
    Epoch 17/20
    60000/60000 [==============================] - 10s 170us/step - loss: 0.0639 - acc: 0.9798
    Epoch 18/20
    60000/60000 [==============================] - 10s 169us/step - loss: 0.0589 - acc: 0.9817
    Epoch 19/20
    60000/60000 [==============================] - 10s 172us/step - loss: 0.0597 - acc: 0.9817
    Epoch 20/20
    60000/60000 [==============================] - 10s 168us/step - loss: 0.0558 - acc: 0.9825

      BiLSTM 结果如下:结果更好

    Epoch 1/20
    60000/60000 [==============================] - 46s 767us/step - loss: 0.6845 - acc: 0.7782
    Epoch 2/20
    60000/60000 [==============================] - 48s 799us/step - loss: 0.1843 - acc: 0.9435
    Epoch 3/20
    60000/60000 [==============================] - 45s 751us/step - loss: 0.1241 - acc: 0.9627
    Epoch 4/20
    60000/60000 [==============================] - 45s 747us/step - loss: 0.0956 - acc: 0.9712
    Epoch 5/20
    60000/60000 [==============================] - 46s 766us/step - loss: 0.0806 - acc: 0.9754
    Epoch 6/20
    60000/60000 [==============================] - 46s 771us/step - loss: 0.0667 - acc: 0.9793
    Epoch 7/20
    60000/60000 [==============================] - 45s 754us/step - loss: 0.0584 - acc: 0.9820
    Epoch 8/20
    60000/60000 [==============================] - 44s 741us/step - loss: 0.0513 - acc: 0.9835
    Epoch 9/20
    60000/60000 [==============================] - 45s 742us/step - loss: 0.0445 - acc: 0.9863
    Epoch 10/20
    60000/60000 [==============================] - 46s 767us/step - loss: 0.0419 - acc: 0.9874
    Epoch 11/20
    60000/60000 [==============================] - 45s 755us/step - loss: 0.0378 - acc: 0.9885
    Epoch 12/20
    60000/60000 [==============================] - 46s 758us/step - loss: 0.0332 - acc: 0.9894
    Epoch 13/20
    60000/60000 [==============================] - 45s 750us/step - loss: 0.0318 - acc: 0.9894
    Epoch 14/20
    60000/60000 [==============================] - 45s 756us/step - loss: 0.0279 - acc: 0.9911
    Epoch 15/20
    60000/60000 [==============================] - 45s 745us/step - loss: 0.0262 - acc: 0.9917
    Epoch 16/20
    60000/60000 [==============================] - 45s 758us/step - loss: 0.0258 - acc: 0.9916
    Epoch 17/20
    60000/60000 [==============================] - 47s 791us/step - loss: 0.0226 - acc: 0.9923
    Epoch 18/20
    60000/60000 [==============================] - 47s 791us/step - loss: 0.0223 - acc: 0.9930
    Epoch 19/20
    60000/60000 [==============================] - 46s 773us/step - loss: 0.0179 - acc: 0.9943
    Epoch 20/20
    60000/60000 [==============================] - 45s 747us/step - loss: 0.0199 - acc: 0.9935

    七、evaluate

      通过 model.evaluate() 来实现。

    score = model.evaluate(x_test, y_test, batch_size=128, verbose=1)
    print(score)
    
    output:
    
    10000/10000 [==============================] - 0s 49us/step
    [0.06827456439994276, 0.9802]
    

      BiLSTM 结果:更好

    10000/10000 [==============================] - 2s 250us/step
    [0.055307343754824254, 0.9838]
    

      

  • 相关阅读:
    退货给供应商批次库存不足时不能退其他供应商
    sqlserver删除重新安装,需要删除的注册表键值
    pb ole intercontrol 控制document的大小
    获取金额的大写格式
    pb 数字转化为大写金额
    js 轮播 flash
    sql:字符串按照某个字符分割后取第几个字符串
    split函数
    WEB2.0概念概述
    推荐所有的.NET开发人员阅读《J2EE Development without EJB》
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/13727035.html
Copyright © 2020-2023  润新知