eulerianCycle.c
- What determines whether a graph is Eulerian or not?
- Write a C program that reads a graph, prints the graph, and determines whether an input graph is Eulerian or not.
- if the graph is Eulerian, the program prints an Eulerian path
- you should start with vertex 0
-
note that you may use the function findEulerianCycle() from the lecture on Graph Search Applications
-
if it is not Eulerian, the program prints the message Not Eulerian
- if the graph is Eulerian, the program prints an Eulerian path
For example,
- The graph:
#4 0 1 0 2 0 3 1 2 2 3
is not Eulerian (can you see why?). Using this as input, your program should output:
V=4, E=5 <0 1> <0 2> <0 3> <1 0> <1 2> <2 0> <2 1> <2 3> <3 0> <3 2> Not Eulerian
-
In the above-named lecture I showed a 'concentric squares' graph (called concsquares):
#8 0 7 7 5 5 1 1 0 6 0 6 7 2 5 2 7 4 1 4 5 3 0 3 1
which is Eulerian, although I've labelled the vertices differently here. For this input your program should produce the output:V=8, E=12 <0 1> <0 3> <0 6> <0 7> <1 0> <1 3> <1 4> <1 5> <2 5> <2 7> <3 0> <3 1> <4 1> <4 5> <5 1> <5 2> <5 4> <5 7> <6 0> <6 7> <7 0> <7 2> <7 5> <7 6> Eulerian cycle: 0 1 4 5 2 7 5 1 3 0 6 7 0
Draw concsquares, label it as given in the input file above, and check the cycle is indeed Eulerian.
-
The function findEulerCycle() in the lecture notes does not handle disconnected graphs. In a disconnected Eulerian graph, each subgraph has an Eulerian cycle.
- Modify this function to handle disconnected graphs.
- With this change, your program should now work for the graph consisting of 2 disconnected triangles:
#6 0 1 0 2 1 2 3 4 3 5 4 5
It should now find 2 Eulerian paths:V=6, E=6 <0 1> <0 2> <1 0> <1 2> <2 0> <2 1> <3 4> <3 5> <4 3> <4 5> <5 3> <5 4> Eulerian cycle: 0 1 2 0 Eulerian cycle: 3 4 5 3
思路:经过一条边就删掉一个,通过遍历查找是否遍历完(针对不连通的graph)
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include "Graph.h" #include "Quack.h" #define UNVISITED -1 #define WHITESPACE 100 void dfsR(Graph g, Vertex v, int numV, int *order, int *visited); Vertex getAdjacent(Graph g, int numV, Vertex v); int readNumV(void) { // returns the number of vertices numV or -1 int numV; char w[WHITESPACE]; scanf("%[ ]s", w); // skip leading whitespace if ((getchar() != '#') || (scanf("%d", &numV) != 1)) { fprintf(stderr, "missing number (of vertices) "); return -1; } return numV; } int readGraph(int numV, Graph g) { // reads number-number pairs until EOF int success = true; // returns true if no error int v1, v2; while (scanf("%d %d", &v1, &v2) != EOF && success) { if (v1 < 0 || v1 >= numV || v2 < 0 || v2 >= numV) { fprintf(stderr, "unable to read edge "); success = false; } else { insertE(g, newE(v1, v2)); } } return success; } void findEulerCycle(Graph g, int numV, Vertex startv) { Quack s = createQuack(); push(startv, s); int allVis = 0; while (!allVis) { printf("Eulerian cycle: "); while (!isEmptyQuack(s)) { Vertex v = pop(s); // v is the top of stack vertex and ... push(v, s); // ... the stack has not changed Vertex w; if ((w = getAdjacent(g, numV, v)) >= 0) { push(w, s); // push a neighbour of v onto stack removeE(g, newE(v, w)); // remove edge to neighbour } else { w = pop(s); printf("%d ", w); } } printf(" "); allVis = 1; for (Vertex v = 0; v < numV && allVis; v++) { for (Vertex w = 0; w < numV && allVis; w++) { if (isEdge(g, newE(v, w))) { allVis = 0; push(v, s); } } } } } Vertex getAdjacent(Graph g, int numV, Vertex v) { // returns the Largest Adjacent Vertex if it exists, else -1 Vertex w; Vertex lav = -1; // the adjacent vertex for (w=numV-1; w>=0 && lav==-1; w--) { Edge e = newE(v, w); if (isEdge(g, e)) { lav = w; } } return lav; } int isEulerian(Graph g, int numV) { int count = 0; for (Vertex w = 0; w < numV; w++) { count = 0; for (Vertex v = 0; v < numV; v++) { if (isEdge(g, newE(w, v))) { count++; } } if (count % 2 != 0) { return 0; } } return 1; } int main (void) { int numV; if ((numV = readNumV()) >= 0) { Graph g = newGraph(numV); if (readGraph(numV, g)) { showGraph(g); if(isEulerian(g, numV)) { findEulerCycle(g, numV, 0); } else { printf("Not Eulerian "); } } } else { return EXIT_FAILURE; } return EXIT_SUCCESS; } // clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_1.txt // clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_2.txt // clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_3.txt
unreachable.c
Write a program that uses a fixed-point computation to find all the vertices in a graph that are unreachable from the start vertex (assume it to be 0). Note the following:
- the fixed-point computation should be iterative
-
you should not use recursion, or stacks or queues
If a graph is disconnected:
- then those vertices not reachable (say vertices 8 and 9) should be output as follows:
Unreachable vertices = 8 9
If a graph is connected then all vertices are reachable and the output is :
-
Unreachable vertices = none
For example:
- Here is a graph that consists of 2 disconnected triangles:
#6 0 1 0 2 1 2 3 4 3 5 4 5
If the start vertex is 0, then the output should be:V=6, E=6 <0 1> <0 2> <1 0> <1 2> <2 0> <2 1> <3 4> <3 5> <4 3> <4 5> <5 3> <5 4> Unreachable vertices = 3 4 5
because obviously the vertices in the second triangle are not reachable from the first. - here is a connected graph:
#5 0 1 1 2 2 3 3 4 4 0 1 3 1 4 2 4
Starting at any vertex, the result should be:V=5, E=8 <0 1> <0 4> <1 0> <1 2> <1 3> <1 4> <2 1> <2 3> <2 4> <3 1> <3 2> <3 4> <4 0> <4 1> <4 2> <4 3> Unreachable vertices = none
思路:
- 首先就是设置 outside数组,默认是都为 -1,一旦被访问了就赋值为 0,变为 inside
- 设置一个 changing 字符串,用来监测 outside 数组是否有变化
- 如果变化的话,就遍历所有inside的点的相连接的点,如果发现 outside,则将此点赋值为 inside,changing 赋值为1
- while 循环,继续遍历,知道所有 inside 点的邻接点都是 inside,遍历结束
- 因此会将所有一个连通图中的点放入在 inside 内部
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include "Graph.h" #define UNVISITED -1 #define WHITESPACE 100 int readNumV(void) { // returns the number of vertices numV or -1 int numV; char w[WHITESPACE]; scanf("%[ ]s", w); // skip leading whitespace if ((getchar() != '#') || (scanf("%d", &numV) != 1)) { fprintf(stderr, "missing number (of vertices) "); return -1; } return numV; } int readGraph(int numV, Graph g) { // reads number-number pairs until EOF int success = true; // returns true if no error int v1, v2; while (scanf("%d %d", &v1, &v2) != EOF && success) { if (v1 < 0 || v1 >= numV || v2 < 0 || v2 >= numV) { fprintf(stderr, "unable to read edge "); success = false; } else { insertE(g, newE(v1, v2)); } } return success; } int *mallocArray(int numV) { int *array = malloc(numV * sizeof(int));// l if (array == NULL) { // o fprintf(stderr, "Out of memory "); // c exit(1); // a } // l int i; // f for (i=0; i<numV; i++) { // u array[i] = UNVISITED; // n } // c return array; // t } void showUnreach(Graph g, int numV, Vertex startv) { int *outside = mallocArray(numV); outside[startv] = 0; int changing = 1; while (changing) { changing = 0; for (Vertex v = 0; v < numV; v++) { if (!outside[v]) { for (Vertex w = 0; w < numV; w++) { if (isEdge(g, newE(v, w)) && outside[w] == UNVISITED) { outside[w] = 0; changing = 1; } } } } } printf("Unreachable vertices = "); int any = 0; for (Vertex v = 0; v < numV; v++) { if (outside[v] == UNVISITED) { printf("%d ", v); any = 1; } } if (!any) { printf("none"); } putchar(' '); return; } int main (void) { int numV; if ((numV = readNumV()) >= 0) { Graph g = newGraph(numV); if (readGraph(numV, g)) { showGraph(g); showUnreach(g, numV, 0); } } else { return EXIT_FAILURE; } return EXIT_SUCCESS; } // clear && gcc unreachable.c GraphAM.c && ./a.out < input_1.txt // clear && gcc unreachable.c GraphAM.c && ./a.out < input_2.txt // clear && gcc unreachable.c GraphAM.c && ./a.out < input_3.txt