• 最短路径


    对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点。最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法。本文先来讲第一种,从某个源点到其余各顶点的最短路径问题。

    这是一个按路径长度递增的次序产生最短路径的算法,它的大致思路是这样的。

    比如说要求图7-7-3中顶点v0到v1的最短路径,显然就是1。由于顶点v1还与v2,v3,v4连线,所以此时我们同时求得了v0->v1->v2 = 1+3 = 4, v0->v1->v3 = 1 +7 = 8, v0->v1->v4 = 1+5 = 6。

    现在我们可以知道v0到v2的最短距离为4而不是v0->v2 直接连线的5,如图7-7-4所示。由于顶点v2还与v4,v5连线,所以同时我们求得了v0->v2->v4其实就是v0->v1->v2->v4 = 4+1=5,v0->v2->v5 = 4+7 = 11,这里v0->v2我们用的是刚才计算出来的较小的4。此时我们也发现v0->v1->v2->v4 = 5要比v0->v1->v4 = 6还要小,所以v0到v4的最短距离目前是5,如图7-7-5所示。

    当我们要求v0到v3的最短路径时,通向v3的三条边,除了v6没有研究过外,v0->v1->v3 = 8, 而v0->v4->v3 = 5 +2 = 7,因此v0到v3的最短路径为7,如图7-7-6所示。

    如上所示,这个算法并不是一下子就求出来v0到v8的最短路径,而是一步步求出它们之间顶点的最短距离,过程中都是基于已经求出的最短路径的基础上,求得更远顶点的最短路径,最终得到想要的结果。


    程序代码如下:(改编自《大话数据结构》)

     C++ Code 
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
     
    #include<iostream>
    using namespace std;

    #define MAXEDGE 20
    #define MAXVEX 20
    #define INFINITY 65535

    typedef struct
    {
        int vexs[MAXVEX];
        int arc[MAXVEX][MAXVEX];
        int numVertexes, numEdges;
    } MGraph;

    typedef int PathArc[MAXVEX];
    typedef int ShortPathTable[MAXVEX];

    /* 构建图 */
    void CreateMGraph(MGraph *G)
    {
        int i, j;

        /* printf("请输入边数和顶点数:"); */
        G->numEdges = 16;
        G->numVertexes = 9;

        for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
        {
            G->vexs[i] = i;
        }

        for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
        {
            for ( j = 0; j < G->numVertexes; j++)
            {
                if (i == j)
                    G->arc[i][j] = 0;
                else
                    G->arc[i][j] = G->arc[j][i] = INFINITY;
            }
        }

        G->arc[0][1] = 1;
        G->arc[0][2] = 5;
        G->arc[1][2] = 3;
        G->arc[1][3] = 7;
        G->arc[1][4] = 5;

        G->arc[2][4] = 1;
        G->arc[2][5] = 7;
        G->arc[3][4] = 2;
        G->arc[3][6] = 3;
        G->arc[4][5] = 3;

        G->arc[4][6] = 6;
        G->arc[4][7] = 9;
        G->arc[5][7] = 5;
        G->arc[6][7] = 2;
        G->arc[6][8] = 7;

        G->arc[7][8] = 4;


        for(i = 0; i < G->numVertexes; i++)
        {
            for(j = i; j < G->numVertexes; j++)
            {
                G->arc[j][i] = G->arc[i][j];
            }
        }

    }
    /*  Dijkstra算法,求有向网G的pos顶点到其余顶点v的最短路径P[v]及带权长度D[v] */
    /*  P[v]的值为前驱顶点下标,D[v]表示pos到v的最短路径长度和 */
    /*  pos 取值 0~MG.numVertexs-1 */
    void ShortestPath_Dijkstra(MGraph MG, int pos, PathArc P, ShortPathTable D)
    {
        int v, w, k, min;
        int final[MAXVEX];/* final[w]=1表示求得顶点pos至w的最短路径 */
        for (v = 0; v < MG.numVertexes; v++)
        {
            final[v] = 0;/* 全部顶点初始化为未知最短路径状态 */
            D[v] = MG.arc[pos][v];/* 将与pos点有连线的顶点加上权值 */
            P[v] = 0;/* 初始化路径数组P为0  */
        }

        D[pos] = 0; /*说明源点pos没有到自身的路径 */
        P[pos] = -1; /* -1表示自身无前驱顶点*/
        final[pos] = 1;/* pos至pos不需要求路径 */
        /* 开始主循环,每次求得pos到某个v顶点的最短路径 */
        for (v = 1; v < MG.numVertexes; v++)
        {
            min = INFINITY;/* 当前所知离pos顶点的最近距离 */
            for (w = 0; w < MG.numVertexes; w++)/* 寻找离pos最近的顶点 */
            {
                if (!final[w] && D[w] < min)
                {
                    k = w;
                    min = D[w];/* w顶点离pos顶点更近 */
                }
            }
            final[k] = 1;/* 将目前找到的最近的顶点置为1 */
            for (w = 0; w < MG.numVertexes; w++)/* 修正当前最短路径及距离 */
            {
                if (!final[w] && (min + MG.arc[k][w] < D[w]))
                {
                    /*  说明找到了更短的路径,修改D[w]和P[w] */
                    D[w] = min + MG.arc[k][w];/* 修改当前路径长度 */
                    P[w] = k;
                }
            }
        }
        /* 结束循环,若P[w] = 0;说明顶点w的前驱为pos */
    }


    int main(void)
    {
        MGraph MG;
        PathArc P;
        ShortPathTable D;
        int i, j, pos = 2;
        CreateMGraph(&MG);
        ShortestPath_Dijkstra(MG, pos, P, D);

        cout << "逆序最短路径如下:" << endl;
        for (i = 8; i >= 0; i--)
        {
            j = i;
            while (P[j] != -1 && P[j] != 0)
            {
                cout << "v" << j << "<-" << "v" << P[j] << "  ";
                j = P[j];
            }
            cout << "v" << j << "<-" << "v" << pos << "  ";
            cout << endl;

        }
        cout << endl;

        return 0;
    }
    输出为:


    其中CreateMGraph函数创建出来的邻接矩阵如图7-7-7所示。


    相信经过上面的分析,大家可以自己进行循环跑程序分析了,循环结束后final = { 1, 1, 1, 1, 1, 1, 1, 1, 1 }表示所有顶点均完成了最短路径的查找工作。此时D = { 4, 3, 0, 3, 1, 4, 6, 8, 12 }, 注意我们在前面说过Dijkstra算法可以求某个源点到其他顶点的最短路径,现在我们上面程序中给出的pos = 2, 即源点为v2, 所以D[2] = 0 表示没有到自身的路径。D数组表示v2到各个顶点的最短路径长度,比如D[8] =1+2 + 3 + 2 + 4 = 12。此时P = { 1, 0, -1, 4, 0, 4, 3, 6, 7 }, 可以这样来理解,P[2] = -1 表示v2没有前驱顶点,P[1] = P[4] = 0 表示v1和v4的前驱顶点为源点v2。再比如P[8] = 7,表示v8的前驱是v7;再由P[7] = 6,表示v7的前驱是v6; P[6] = 3 表示v6的前驱是v3, 这样就可以得到v2 到 v8的最短路径为v2->v4->v3->v6->v7->v8,从上面的程序输出也可以验证我们的推测。

    其实最终返回的数组D和数组P,是可以得到v2到任意一个顶点的最短路径和路径长度的,也就是说我们通过Dijkstra算法解决了从某个源点到其余各顶点的最短路径问题。从循环嵌套可以得到此算法的时间复杂度为O(n^2),如果我们要得到任一顶点到其余顶点的最短路径呢?最简单的办法就是对每个顶点都当作源点进行一次Dijkstra算法,等于在原有算法的基础上,再来一次循环,此时整个算法的时间复杂度就为O(n^3)。

  • 相关阅读:
    如何在XSLT中实现勾选的效果
    6个jQuery图表Web应用扩展
    数据仓库(集市)之间共享维度表
    Json.NET
    jquery调用页面的方法
    使用javascript打开模态对话框
    使用ApplicationDeployment 类以编程方面对ClickOnce程序进行更新 【转载】
    XSLT 编译器 (xsltc.exe)
    在xslt中添加链接的方式
    哀悼
  • 原文地址:https://www.cnblogs.com/alantu2018/p/8471787.html
Copyright © 2020-2023  润新知