• Singleton


    问题描述

    现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能;在实际开发过程中,会专门有一个日志模块,负责写日志,由于在系统的任何地方,我们都有可能要调用日志模块中的函数,进行写日志。那么,如何构造一个日志模块的实例呢?难道,每次new一个日志模块实例,写完日志,再delete,不要告诉我你是这么干的。在C++中,可以构造一个日志模块的全局变量,那么在任何地方就都可以用了,是的,不错。但是,我所在的开发部门的C++编码规范是参照Google的编码规范的。

    全局变量在项目中是能不用就不用的,它是一个定时炸弹,是一个不安全隐患,特别是在多线程程序中,会有很多的不可预测性;同时,使用全局变量,也不符合面向对象的封装原则,所以,在纯面向对象的语言Java和C#中,就没有纯粹的全局变量。那么,如何完美的解决这个日志问题,就需要引入设计模式中的单例模式。

    单例模式

    何为单例模式,在GOF的《设计模式:可复用面向对象软件的基础》中是这样说的:保证一个类只有一个实例,并提供一个访问它的全局访问点。首先,需要保证一个类只有一个实例;在类中,要构造一个实例,就必须调用类的构造函数,如此,为了防止在外部调用类的构造函数而构造实例,需要将构造函数的访问权限标记为protected或private;最后,需要提供要给全局访问点,就需要在类中定义一个static函数,返回在类内部唯一构造的实例。意思很明白,使用UML类图表示如下。

    UML类图

    Singleton Pattern

    代码实现

    单例模式,单从UML类图上来说,就一个类,没有错综复杂的关系。但是,在实际项目中,使用代码实现时,还是需要考虑很多方面的。

    复制代码
    #include <iostream>
    using namespace std;
    
    class Singleton
    {
    public:
        static Singleton *GetInstance()
        {
            if (m_Instance == NULL )
            {
                m_Instance = new Singleton ();
            }
            return m_Instance;
        }
    
        static void DestoryInstance()
        {
            if (m_Instance != NULL )
            {
                delete m_Instance;
                m_Instance = NULL ;
            }
        }
    
        // This is just a operation example
        int GetTest()
        {
            return m_Test;
        }
    
    private:
        Singleton(){ m_Test = 10; }
        static Singleton *m_Instance;
        int m_Test;
    };
    
    Singleton *Singleton ::m_Instance = NULL;
    
    int main(int argc , char *argv [])
    {
        Singleton *singletonObj = Singleton ::GetInstance();
        cout<<singletonObj->GetTest()<<endl;
    
        Singleton ::DestoryInstance();
        return 0;
    }
    复制代码

    这是最简单,也是最普遍的实现方式,也是现在网上各个博客中记述的实现方式,但是,这种实现方式,有很多问题,比如:没有考虑到多线程的问题,在多线程的情况下,就可能创建多个Singleton实例,以下版本是改善的版本。

    实现二:

    复制代码
    #include <iostream>
    using namespace std;
    
    class Singleton
    {
    public:
        static Singleton *GetInstance()
        {
            if (m_Instance == NULL )
            {
                Lock(); // C++没有直接的Lock操作,请使用其它库的Lock,比如Boost,此处仅为了说明
                if (m_Instance == NULL )
                {
                    m_Instance = new Singleton ();
                }
                UnLock(); // C++没有直接的Lock操作,请使用其它库的Lock,比如Boost,此处仅为了说明
            }
            return m_Instance;
        }
    
        static void DestoryInstance()
        {
            if (m_Instance != NULL )
            {
                delete m_Instance;
                m_Instance = NULL ;
            }
        }
    
        int GetTest()
        {
            return m_Test;
        }
    
    private:
        Singleton(){ m_Test = 0; }
        static Singleton *m_Instance;
        int m_Test;
    };
    
    Singleton *Singleton ::m_Instance = NULL;
    
    int main(int argc , char *argv [])
    {
        Singleton *singletonObj = Singleton ::GetInstance();
        cout<<singletonObj->GetTest()<<endl;
        Singleton ::DestoryInstance();
    
        return 0;
    }
    复制代码

    此处进行了两次m_Instance == NULL的判断,是借鉴了Java的单例模式实现时,使用的所谓的“双检锁”机制。因为进行一次加锁和解锁是需要付出对应的代价的,而进行两次判断,就可以避免多次加锁与解锁操作,同时也保证了线程安全。但是,这种实现方法在平时的项目开发中用的很好,也没有什么问题?但是,如果进行大数据的操作,加锁操作将成为一个性能的瓶颈;为此,一种新的单例模式的实现也就出现了。

    实现三:

    复制代码
    #include <iostream>
    using namespace std;
    
    class Singleton
    {
    public:
        static Singleton *GetInstance()
        {
            return const_cast <Singleton *>(m_Instance);
        }
    
        static void DestoryInstance()
        {
            if (m_Instance != NULL )
            {
                delete m_Instance;
                m_Instance = NULL ;
            }
        }
    
        int GetTest()
        {
            return m_Test;
        }
    
    private:
        Singleton(){ m_Test = 10; }
        static const Singleton *m_Instance;
        int m_Test;
    };
    
    const Singleton *Singleton ::m_Instance = new Singleton();
    
    int main(int argc , char *argv [])
    {
        Singleton *singletonObj = Singleton ::GetInstance();
        cout<<singletonObj->GetTest()<<endl;
        Singleton ::DestoryInstance();
    }
    复制代码

    因为静态初始化在程序开始时,也就是进入主函数之前,由主线程以单线程方式完成了初始化,所以静态初始化实例保证了线程安全性。在性能要求比较高时,就可以使用这种方式,从而避免频繁的加锁和解锁造成的资源浪费。由于上述三种实现,都要考虑到实例的销毁,关于实例的销毁,待会在分析。由此,就出现了第四种实现方式:

    实现四:

    复制代码
    #include <iostream>
    using namespace std;
    
    class Singleton
    {
    public:
        static Singleton *GetInstance()
        {
            static Singleton m_Instance;
            return &m_Instance;
        }
    
        int GetTest()
        {
            return m_Test++;
        }
    
    private:
        Singleton(){ m_Test = 10; };
        int m_Test;
    };
    
    int main(int argc , char *argv [])
    {
        Singleton *singletonObj = Singleton ::GetInstance();
        cout<<singletonObj->GetTest()<<endl;
    
        singletonObj = Singleton ::GetInstance();
        cout<<singletonObj->GetTest()<<endl;
    }
    复制代码

    以上就是四种主流的单例模式的实现方式,如果大家还有什么好的实现方式,希望大家能推荐给我。谢谢了。

    实例销毁

    在上述的四种方法中,除了第四种没有使用new操作符实例化对象以外,其余三种都使用了;我们一般的编程观念是,new操作是需要和delete操作进行匹配的;是的,这种观念是正确的。在上述的实现中,是添加了一个DestoryInstance的static函数,这也是最简单,最普通的处理方法了;但是,很多时候,我们是很容易忘记调用DestoryInstance函数,就像你忘记了调用delete操作一样。由于怕忘记delete操作,所以就有了智能指针;那么,在单例模型中,没有“智能单例”,该怎么办?怎么办?

    那我先从实际的项目中说起吧,在实际项目中,特别是客户端开发,其实是不在乎这个实例的销毁的。因为,全局就这么一个变量,全局都要用,它的生命周期伴随着软件的生命周期,软件结束了,它也就自然而然的结束了,因为一个程序关闭之后,它会释放它占用的内存资源的,所以,也就没有所谓的内存泄漏了。但是,有以下情况,是必须需要进行实例销毁的:

    1. 在类中,有一些文件锁了,文件句柄,数据库连接等等,这些随着程序的关闭而不会立即关闭的资源,必须要在程序关闭前,进行手动释放;
    2. 具有强迫症的程序员。

    以上,就是我总结的两点。

    虽然,在代码实现部分的第四种方法能满足第二个条件,但是无法满足第一个条件。好了,接下来,就介绍一种方法,这种方法也是我从网上学习而来的,代码实现如下:

    复制代码
    #include <iostream>
    using namespace std;
    
    class Singleton
    {
    public:
        static Singleton *GetInstance()
        {
            return m_Instance;
        }
    
        int GetTest()
        {
            return m_Test;
        }
    
    private:
        Singleton(){ m_Test = 10; }
        static Singleton *m_Instance;
        int m_Test;
    
        // This is important
        class GC
        {
        public :
            ~GC()
            {
                // We can destory all the resouce here, eg:db connector, file handle and so on
                if (m_Instance != NULL )
                {
                    cout<< "Here is the test" <<endl;
                    delete m_Instance;
                    m_Instance = NULL ;
                }
            }
        };
        static GC gc;
    };
    
    Singleton *Singleton ::m_Instance = new Singleton();
    Singleton ::GC Singleton ::gc;
    
    int main(int argc , char *argv [])
    {
        Singleton *singletonObj = Singleton ::GetInstance();
        cout<<singletonObj->GetTest()<<endl;
    
        return 0;
    }
    复制代码

    在程序运行结束时,系统会调用Singleton的静态成员GC的析构函数,该析构函数会进行资源的释放,而这种资源的释放方式是在程序员“不知道”的情况下进行的,而程序员不用特别的去关心,使用单例模式的代码时,不必关心资源的释放。那么这种实现方式的原理是什么呢?我剖析问题时,喜欢剖析到问题的根上去,绝不糊涂的停留在表面。由于程序在结束的时候,系统会自动析构所有的全局变量,实际上,系统也会析构所有类的静态成员变量,就像这些静态变量是全局变量一样。我们知道,静态变量和全局变量在内存中,都是存储在静态存储区的,所以在析构时,是同等对待的。

    由于此处使用了一个内部GC类,而该类的作用就是用来释放资源,而这种使用技巧在C++中是广泛存在的,在后面的博客中,我会总结这一技巧,参见《C++中的RAII机制》

    模式扩展

    在实际项目中,一个模式不会像我们这里的代码那样简单,只有在熟练了各种设计模式的特点,才能更好的在实际项目中进行运用。单例模式和工厂模式在实际项目中经常见到,两种模式的组合,在项目中也是很常见的。所以,有必要总结一下两种模式的结合使用。

    一种产品,在一个工厂中进行生产,这是一个工厂模式的描述;而只需要一个工厂,就可以生产一种产品,这是一个单例模式的描述。所以,在实际中,一种产品,我们只需要一个工厂,此时,就需要工厂模式和单例模式的结合设计。由于单例模式提供对外一个全局的访问点,所以,我们就需要使用简单工厂模式中那样的方法,定义一个标识,用来标识要创建的是哪一个单件。由于模拟代码较多,在文章最后,提供下载链接。

    总结

    为了写这篇文章,自己调查了很多方面的资料,由于网上的资料在各方面都有很多的瑕疵,质量参次不齐,对我也造成了一定的误导。而这篇文章,有我自己的理解,如有错误,请大家指正。

    由于该文对设计模式的总结,我认为比网上80%的都全面,希望对大家有用。在实际的开发中,并不会用到单例模式的这么多种,每一种设计模式,都应该在最适合的场合下使用,在日后的项目中,应做到有地放矢,而不能为了使用设计模式而使用设计模式。

  • 相关阅读:
    Unity3D-光照贴图技术
    登岳麓山
    第一个OC程序
    Unity3D之碰撞体,刚体
    TypeError: 'stepUp' called on an object that does not implement interface HTMLInputElement
    QQ互联登录回调路径错误redirect uri is illegal(100010)
    Quartz.Net使用
    C# 文件相关操作
    微信扫码支付模式一和模式二的区别
    ankhSVN安装后,VS2010使用
  • 原文地址:https://www.cnblogs.com/alantu2018/p/8462260.html
Copyright © 2020-2023  润新知