3512: DZY Loves Math IV
Description
给定n,m,求 模10^9+7的值。
Input
仅一行,两个整数n,m。
Output
仅一行答案。
Sample Input
100000 1000000000
Sample Output
857275582
数据规模:
1<=n<=10^5,1<=m<=10^9,本题共4组数据。
数据规模:
1<=n<=10^5,1<=m<=10^9,本题共4组数据。
数论神题系列,成功卡了3天。。。
首先n很小,直接枚举
然后根据[ varphi(in) = varphi(i) cdot varphi(frac{n}{d})cdot sum_{emid d} varphi(e) = varphi(i) cdot sum_{emid d}varphi(frac{n}{e}) ]这个式子
可以推得[ S(n,m) = sum_{dmid n}varphi(frac{n}{d})cdot S(d, lfloor frac{m}{d}
floor) ]
1 #include<bits/stdc++.h> 2 using namespace std; 3 template <class _T> inline void read(_T &_x) { 4 int _t; bool flag = false; 5 while ((_t = getchar()) != '-' && (_t < '0' || _t > '9')) ; 6 if (_t == '-') _t = getchar(), flag = true; _x = _t - '0'; 7 while ((_t = getchar()) >= '0' && _t <= '9') _x = _x * 10 + _t - '0'; 8 if (flag) _x = -_x; 9 } 10 using namespace std; 11 const int mod = 1e9 + 7; 12 const int N = 1e5 + 10; 13 const int M = 7e6 + 10; 14 typedef long long LL; 15 inline int add(int a, int b) { 16 a += b; 17 if (a < 0) a += mod; if (a >= mod) a -= mod; 18 return a; 19 } 20 inline int mul(int a, int b) { 21 return (int)((LL)a * b % mod); 22 } 23 int phi[M], prime[M / 10], pcnt; 24 int Div[N], mx[N]; 25 bool vis[M]; 26 inline void init() { 27 phi[1] = mx[1] = Div[1] = 1; 28 for (register int i = 2, j, tmp; i < M; ++i) { 29 if (!vis[i]) { 30 prime[++pcnt] = i; 31 phi[i] = i - 1; 32 if (i < N) Div[i] = 1, mx[i] = i; 33 } 34 for (j = 1; j <= pcnt && (LL)prime[j] * i < M; ++j) { 35 tmp = prime[j] * i; 36 vis[tmp] = true; 37 if (tmp < N) mx[tmp] = prime[j]; 38 if (i % prime[j] == 0) { 39 phi[tmp] = phi[i] * prime[j]; 40 if (tmp < N) Div[tmp] = Div[i] * prime[j]; 41 break; 42 } 43 phi[tmp] = phi[i] * (prime[j] - 1); 44 if (tmp < N) Div[tmp] = Div[i]; 45 } 46 } 47 for (register int i = 2; i < M; ++i) phi[i] = add(phi[i], phi[i - 1]); 48 } 49 struct Hash_table { 50 int tot, fir[10000]; 51 struct Edge { 52 int v, res, nxt; 53 }e[100000]; 54 Hash_table() {memset(fir, -1, sizeof fir); tot = 0; } 55 inline void add(int a, int b, int c) { 56 e[++tot] = (Edge){b, c, fir[a]}; 57 fir[a] = tot; 58 } 59 inline int find(int x) { 60 int w = x >> 20; 61 for (int u = fir[w]; ~u; u = e[u].nxt) 62 if (e[u].v == x) return e[u].res; 63 return -1; 64 } 65 inline void insert(int v, int res) { 66 add(v >> 20, v, res); 67 } 68 }mp; 69 int Phi(int n) { 70 if (n < M) return phi[n]; 71 int w = mp.find(n); if (~w) return w; 72 int res = (int)(((LL)n * (n + 1) >> 1) % mod); 73 for (int i = 2, j; i <= n; i = j + 1) { 74 j = n / (n / i); 75 res = add(res, -mul(j - i + 1, Phi(n / i))); 76 } 77 mp.insert(n, res); return res; 78 } 79 int sum(int n, int m) { 80 if (!m) return 0; 81 if (m == 1) return phi[n] - phi[n - 1]; 82 if (n == 1) return Phi(m); 83 int &k = mx[n]; 84 return add(mul(sum(n / k, m), k - 1), sum(n, m / k)); 85 } 86 int f[100010]; 87 int main() { 88 //freopen("3512.in", "r", stdin); 89 //freopen("3512.out", "w", stdout); 90 init(); 91 int n, m, ans = 0; read(n), read(m); 92 memset(f, -1, sizeof f); 93 for (int i = 1; i <= n; ++i) { 94 int k = Div[i], t = i / k, ret; 95 if (~f[t]) ret = mul(k, f[t]); 96 else ret = mul(k, (f[t] = sum(t, m))); 97 ans = add(ans, ret); 98 } 99 cout << ans << endl; 100 return 0; 101 }