• 选课[Luogu P2014]


    【题目描述】
    在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有 (N) 门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程(a)是课程(b)的先修课即只有学完了课程(a),才能学习课程(b))。一个学生要从这些课程里选择 (M) 门课程学习,问他能获得的最大学分是多少?

    【输入格式】
    第一行有两个整数 (N) , (M) 用空格隔开。( (1 leq N leq 300), (1 leq M leq 300) )

    接下来的 (N) 行,第 (I+1) 行包含两个整数 (k_i)(s_i) , (k_i) 表示第(I)门课的直接先修课,(s_i)表示第(I)门课的学分。若 (k_i=0) 表示没有直接先修课((1 leq {k_i} leq N), (1 leq {s_i} leq 20) )。

    【输出格式】
    只有一行,选 (M) 门课程的最大得分。

    题解

    可以看出如果将课程向它的先修课连边 会形成一棵树 其中$0$号节点就是根

    显然是一个背包问题。。。外面再套一个树形DP

    先令(f[x][i][j])表示 (x)的子树中 枚举到(x)的第(i)个儿子 在(x)的子树中一共选了(j)个节点 的最大学分

    从一个儿子的子树里按规则取(k)个节点出来就相当于一个重量为(k),权值为(f[son][子树大小][k])的物品 显然你从一个儿子那里只能选择一个这样的物品 你不可能既从这个儿子的子树中选取3个节点 又再选取重复的2个节点 所以实际上就是一个分组背包 一个组就是一个儿子的子树

    那么转移方程是(f[x][i][j]=min_{k=1}^{j-1}(f[x][i-1][j],f[x][i-1][j-k]+f[son[i]][tot][k]))
    (son[i])就是(x)的第(i)个儿子 (tot)就当是(son[i])的子树大小吧

    初始状态:(dp[x][0][1] = s_x) 其他的都设成(-inf)

    根据背包DP的尿性 (i)那一维是可以通过倒着枚举来优化掉,降低空间复杂度的(虽然不优化也没事)。。。

    时间复杂度大大低于(O(n^3))

    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    inline int read() {
    	int x = 0, f = 1; char ch = getchar();
    	for (; ch > '9' || ch < '0'; ch = getchar()) if (ch == '-') f = -1;
    	for (; ch <= '9' && ch >= '0'; ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ '0');
    	return x * f;
    }
    
    int n, m;
    
    int head[305], pre[605], to[605], sz;
    int a[305], f[305][305];
    
    inline void addedge(int u, int v) {
    	pre[++sz] = head[u]; to[sz] = v; head[u] = sz;
    	pre[++sz] = head[v]; to[sz] = u; head[v] = sz;
    } 
    
    void dfs(int x, int fa) {
    	f[x][1] = a[x];
    	for (int i = head[x]; i; i = pre[i]) {
    		int y = to[i];
    		if (y == fa) continue;
    		dfs(y, x);
    		for (int j = m; j >= 1; j--) {
    			for (int k = 0; k < j; k++) {
    				f[x][j] = max(f[x][j], f[y][k] + f[x][j-k]);
    			}
    		}
    	}
    }
    
    int main() {
    	n = read();
    	m = read() + 1; 
    	for (int i = 1; i <= n; i++) {
    		addedge(read(), i);
    		a[i] = read();
    	}
    	memset(f, -0x3f, sizeof(f));
    	dfs(0, 0);
    	printf("%d
    ", f[0][m]);
    	return 0;
    } 
    
  • 相关阅读:
    总结一些关于操作数据库是sql语句还是存储过程问题
    vs2010 创建预编译头 Debug 正常 Release Link Error问题解决
    创建Unicode格式的INI文件
    dos命令记录以及dos下通过进程id查找工作路径
    windows下多字节和宽字节转换
    关于多字节传输导致的乱码问题
    关于mysql数据库字符集优先级问题
    转: Apache开启gzip
    HTML 5 drag and drop 简介
    转: ES6异步编程: co函数库的含义与用法
  • 原文地址:https://www.cnblogs.com/ak-dream/p/AK_DREAM46.html
Copyright © 2020-2023  润新知