• 集合选数[HNOI2012]


    【问题描述】
    《集合论与图论》这门课程有一道作业题,要求同学们求出{(1, 2, 3, 4, 5)}的所有满足以 下条件的子集:若 (x) 在该子集中,则 (2x)(3x) 不能在该子集中。同学们不喜欢这种具有枚举性质的题目,于是把它变成了以下问题:对于任意一个正整数 (nle100000),如何求出{(1, 2,..., n)} 的满足上述约束条件的子集的个数(只需输出对 (1,000,000,001) 取模的结果),现在这个问题就交给你了。

    【输入格式】
    只有一行,其中有一个正整数 (n)(30\%)的数据满足 (nle20), (100\%)的数据满足(n le 100000)

    【输出格式】
    仅包含一个正整数,表示{(1, 2,..., n)}有多少个满足上述约束条件的子集。

    第一眼看上去是个组合计数问题。。。然而组合做不了,所以我们考虑DP。
    考虑将题目所给的限制条件转化成一个矩阵
    以从(1)开始为例:
    这是矩阵 -> (egin{bmatrix} 1 & 3 & 9 & 27 & ...\ 2 & 6 & 18 & 54 & ... \ 4 & 12 & 36 & 108 & ... \ 8 & 24 & 72 & 216 & ... \ ... & ... & ... & ... & ... end{bmatrix} quad)
    于是乎 原问题就变成了求在这个矩阵里选一些两两不相邻的数的方案数
    由于这些数是指数级增长的,所以在(100000)范围内,粗略估计矩阵的长宽最多也不会超过(20),而(3)倍增长的列的数目更是不会超过(11)
    所以可以想到用状压DP 怎么DP就不说了 注意可以把很多没必要枚举的状态跳过,第一次写的时候被卡TLE了。。。
    (1)开始的矩阵不一定包含所有数,对于一个数,如果前面的矩阵都没有包含它,如(5, 7, 11),需要在从这个数开始的矩阵再DP一次,答案就是每次DP出来的部分答案的积。
    时间复杂度(O()一秒内())

    【代码】

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    using namespace std;
    typedef long long ll;
    
    const ll mod = 1000000001;
    ll n, dp[21][100005], ans = 1;
    ll len, len2[1005];
    bool vis[100005];
    
    inline void add(ll &x, ll y) {
        x += y;
        if (x >= mod) x -= mod;
    }
    
    ll solve(ll x) {
        ll nowans = 0;
    	for (int i = 1; ; i++) {
            ll cur = (x << (i-1));
            if (cur > n) {
                len = i - 1;
                break;
            }
            vis[cur] = 1;
            for (int j = 1; ; j++) {
                cur *= 3;
                if (cur > n) {
                    len2[i] = j;
                    break;
                }
                vis[cur] = 1;
            }
        }
        for (int i = 0; i <= len; i++) for (int j = 0; j < (1 << len2[i]); j++) dp[i][j] = 0;
        dp[0][0] = 1;
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < (1 << len2[i]); j++) {
                if (dp[i][j]) {
                    if (j & (j << 1)) continue;
                    for (int k = 0; k < (1 << len2[i+1]); k++) {
                        if (k & (k << 1)) continue;
                        if ((j & k) == 0) {
                            dp[i+1][k] = (dp[i+1][k] + dp[i][j]) % mod;
                        }
                    }
                }
            }
        }
        for (int j = 0; j < (1 << len2[len]); j++) {
            nowans = (nowans + dp[len][j]) % mod;
        }
        return nowans;
    }
    
    int main() {
        scanf("%lld", &n);
        for (int i = 1; i <= n; i++) {
            if (!vis[i]) {
                vis[i] = 1;
                ans = ans * solve(i) % mod;
            }
        }
        printf("%lld
    ", ans);
        return 0;
    }
    








    ~~DP题目太难了 我太蒻了~~
  • 相关阅读:
    jq validate的用法
    position:fixed定位
    postgresql-日志表
    postgresql-查看各个数据库大小
    postgresql-清空shared_buffers
    postgresql-int,bigint,numeric效率测试
    postgresql-查看表大小
    mongodb postgresql mysql jsonb对比
    postgresql和redis
    postgresql-死锁
  • 原文地址:https://www.cnblogs.com/ak-dream/p/AK_DREAM11.html
Copyright © 2020-2023  润新知