• ScalikeJDBC,操作mysql数据,API


    一、构建maven项目,添加pom.xml依赖

     <properties>
            <scala.version>2.11.8</scala.version>
            <scalikejdbc.version>3.3.2</scalikejdbc.version>
        </properties>
    
            <!-- 添加scalikejdbc依赖 -->
            <!-- https://mvnrepository.com/artifact/org.scalikejdbc/scalikejdbc -->
            <dependency>
                <groupId>org.scalikejdbc</groupId>
                <artifactId>scalikejdbc_2.11</artifactId>
                <version>${scalikejdbc.version}</version>
            </dependency>
    
            <dependency>
                <groupId>org.scalikejdbc</groupId>
                <artifactId>scalikejdbc-config_2.11</artifactId>
                <version>${scalikejdbc.version}</version>
            </dependency>
    

    二、resource文件下创建application.conf文件,并配置以下内容

    # JDBC settings
    
    db.default.driver="com.mysql.jdbc.Driver"
    db.default.url="jdbc:mysql://localhost:3306//spark?characterEncoding=uft-8"
    db.default.user="root"
    db.default.password="123456"
    # Connection Pool settings
    db.default.poolInitialSize=10
    db.default.poolMaxSize=20
    db.default.connectionTimeoutMillis=1000
    
    # Connection Pool settings
    db.default.poolInitialSize=5
    db.default.poolMaxSize=7
    db.default.poolConnectionTimeoutMillis=1000
    db.default.poolValidationQuery="select 1 as one"
    db.default.poolFactoryName="commons-dbcp2"
    
    db.legacy.driver="org.h2.Driver"
    db.legacy.url="jdbc:h2:file:./db/db2"
    db.legacy.user="foo"
    db.legacy.password="bar"
    
    # MySQL example
    db.default.driver="com.mysql.jdbc.Driver"
    db.default.url="jdbc:mysql://localhost/scalikejdbc"
    
    # PostgreSQL example
    db.default.driver="org.postgresql.Driver"
    db.default.url="jdbc:postgresql://localhost:5432/scalikejdbc"
    

    三、操作mysql数据库实例

    import scalikejdbc.{ConnectionPool, DB, SQL}
    import scalikejdbc.config.DBs
    
    case class User(id: Int, name: String, age: Int)
    
    object ScalaLikeJdbc {
      def main(args: Array[String]): Unit = {
        // 加载驱动
        classOf[com.mysql.jdbc.Driver]
        //    Class.forName("com.mysql.jdbc.Driver")
        //解析application.conf的文件
        DBs.setup()
        //    createTable()
        //    println("User2表创建完毕")
        //    val userLists = List(User(1, "zhangsan", 18), User(2, "lisi", 20), User(3, "wangwu", 35))
        //    insert(userLists)
        //    println("批量插入完毕")
        //    println(selectAll())
        //    println(selectByID(2))
        //    updateByID(2,60)
        //    println(selectByID(2))
    
        deleteByID(2)
        println(selectAll())
        DBs.close()
      }
    
      def createTable(): Unit = {
        DB.autoCommit { implicit session =>
          SQL("create table user2(
    id int not null auto_increment,
    name varchar(100) not null,
    age int,
    primary key ( id )
    )engine=innodb default charset=utf8; ")
            .execute.apply()
        }
      }
    
      def insert(users: List[User]): Unit = {
        DB.localTx { implicit session =>
          for (user <- users) {
            SQL("insert into user2(id,name,age) values(?,?,?)")
              .bind(user.id, user.name, user.age)
              .update().apply()
          }
    
        }
      }
    
      //3、查询所有
      def selectAll(): List[User] = {
        val list: List[User] = DB.readOnly {
          implicit session =>
            SQL("SELECT * from user2").map(rs => User(rs.int(1), rs.string(2), rs.int(3))).list().apply()
        }
        list
      }
    
      def selectByID(id: Int): Option[User] = {
        val list: Option[User] = DB.readOnly {
          implicit session =>
            SQL(s"select id,name,age from user2 where id = ${id}").map(rs => User(rs.int(1), rs.string(2), rs.int(3))).single.apply()
        }
        list
      }
    
      def updateByID(id: Int, age: Int): Unit = {
        DB.localTx {
          implicit session =>
            SQL(s"update user2 set age = ?  where id = ${id}").bind(age).update().apply()
        }
      }
    
      def deleteByID(id: Int): Unit = {
        DB.localTx {
          implicit session =>
            SQL(s"delete from user2 where id = ${id}").update().apply()
        }
      }
    }
    

    四、直接在代码中进行连接初始化,省去(二)

    import scalikejdbc.config._
    import scalikejdbc._
    import scala.collection.mutable.ListBuffer
    
    object ScalikejdbcApp {
      Class.forName("com.mysql.jdbc.Driver")
      ConnectionPool.singleton("jdbc:mysql://192.168.xx.xx:3306/spark","root","123456")
      
      implicit val session = AutoSession
    
      def main(args: Array[String]): Unit = {
        create
        //insert(1,"ruoruo")
        //highlevelinsert(List(3,4),List("JJ","星星"))//顺序不连续没关系,但是id有重复就会报错
        //update(4,"xingxing")
        println(select())
        delete()
        ConnectionPool.close()//用完连接池要关闭
      }
      
      def create = {
        implicit val session = AutoSession
        sql"""
           CREATE TABLE IF NOT EXISTS Person(
             id int PRIMARY KEY NOT NULL auto_increment,
             name varchar(64),
             created_time timestamp not null DEFAULT current_timestamp
          )ENGINE=InnoDB  DEFAULT CHARSET=utf8 AUTO_INCREMENT=1
          """.execute.apply()
        //如果你不想字段为 NULL 可以设置字段的属性为 NOT NULL, 在操作数据库时如果输入该字段的数据为NULL ,就会报错。
        //PRIMARY KEY关键字用于定义列为主键。 您可以使用多列来定义主键,列间以逗号分隔
        //AUTO_INCREMENT定义列为自增的属性,一般用于主键,数值会自动加1
        //ENGINE 设置存储引擎,CHARSET 设置编码
      }
      
      //插入一条数据
        def insert(id:Int,name:String ): Unit ={
          implicit val session=AutoSession
          sql"""insert into Person(id,name)values (${id},${name})""".update.apply()
        }
        
      //插入两条数据。
      def highlevelinsert(id:List[Int],name:List[String])={
        sql"""insert into Person(id,name)values(${id(0)},${name(0)}),(${id(1)},${name(1)}) """.update().apply()
        println(s"${id}(0),${name(0)}")//List(3, 4)(0),JJ
      }
      
      //更新数据
      def update(id:Int,name:String)={
        implicit val session=AutoSession
        sql"update Person set name=${name}where id =${id}".update().apply()
      }
      
      //查询数据
      def select()={
        implicit val session=AutoSession
        //sql"select * from Person".map(x=>x.string("name")).list().apply()//List(ruoruo, J?, xingxing)
        //sql"select * from Person where Person.id=4".map(x=>x.string("name")).single().apply()//Some(xingxing)
       // sql"select * from Person where Person.id=4".map(x=>x.string("name")).single().apply().get//xingxing
        sql"select * from Person".map(x=>(x.string("id"),x.string("name"))).list().apply()//List((1,ruoruo), (3,J?), (4,xingxing))
      }
      //删除数据
    def delete={
      //sql"delete from Person where person.id=3".update()//删除id=3,name=J总这条数据
      //sql"delete from Person".update()//删除Person这张表里面的所有数据,但是该表依然存在
      sql"drop table if exists  person".update()//删除整张表
    	}
    }
    

    五、ScalikeJDBC操作API

    5.1 查询API

    ScalikeJDBC中有多种查询API,包括single, first, list 和foreach,他们内部都是调用java.sql.PreparedStatement#executeQuery()实现的。

    single查询

    single函数返回匹配到的单行数据,并且封装成Option值。如果single函数匹配到多行,那么在运行的时候会抛出异常。使用single函数如下:

    import scalikejdbc._
     
    val id = 123
     
    // simple example
    val name: Option[String] = DB readOnly { implicit session =>
      sql"select name from emp where id = ${id}".map(rs => rs.string("name")).single.apply()
    }
     
    // defined mapper as a function
    val nameOnly = (rs: WrappedResultSet) => rs.string("name")
    val name: Option[String] = DB readOnly { implicit session =>
      sql"select name from emp where id = ${id}".map(nameOnly).single.apply()
    }
     
    // define a class to map the result
    case class Emp(id: String, name: String)
    val emp: Option[Emp] = DB readOnly { implicit session =>
      sql"select id, name from emp where id = ${id}"
        .map(rs => Emp(rs.string("id"), rs.string("name"))).single.apply()
    }
     
    // QueryDSL
    object Emp extends SQLSyntaxSupport[Emp] {
      def apply(e: ResultName[Emp])(rs: WrappedResultSet): Emp = new Emp(id = rs.get(e.id), name = rs.get(e.name))
    }
    val e = Emp.syntax("e")
    val emp: Option[Emp] = DB readOnly { implicit session =>
      withSQL { select.from(Emp as e).where.eq(e.id, id) }.map(Emp(e.resultName)).single.apply()
    }
    

    返回多行结果中的第一行

    first函数返回多行结果中的第一行结果,而且返回的类型也是Option封装的。

    val name: Option[String] = DB readOnly { implicit session =>
      sql"select name from emp".map(rs => rs.string("name")).first.apply()
    }
     
    val e = Emp.syntax("e")
    val name: Option[String] = DB readOnly { implicit session =>
      withSQL { select(e.result.name).from(Emp as e) }.map(_.string(e.name)).first.apply()
    }
    

    返回List的结果

    list函数将匹配到的多行存储在scala.collection.immutable.List中:

    val name: List[String] = DB readOnly { implicit session =>
      sql"select name from emp".map(rs => rs.string("name")).list.apply()
    }
     
    val e = Emp.syntax("e")
    val name: Option[String] = DB readOnly { implicit session =>
      withSQL { select(e.result.name).from(Emp as e) }.map(_.string(e.name)).list.apply()
    }
    

    Foreach操作

    foreach函数允许你在iterations中进行一些有副作用的计算,这个函数在ResultSet含有大量的返回值情况下特别有用。

    DB readOnly { implicit session =>
      sql"select name from emp".foreach { rs => 
        out.write(rs.string("name")) 
      }
    }
     
    val e = Emp.syntax("e")
    DB readOnly { implicit session =>
      withSQL { select(e.name).from(Emp as e) }.foreach { rs => 
        out.write(rs.string(e.name)) 
      }
    }
    

    设置JDBC fetchSize

    PostgreSQL的JDBC驱动默认情况下(fetchSize=0)将无限制地获取返回的结果,这种情况会导致内存相关的问题:

    在ScalikeJDBC 2.0.5之后,我们可以设置JDBC的fetchSize值:

    val e = Emp.syntax("e")
    DB readOnly { implicit session =>
      sql"select name from emp"
        .fetchSize(1000)
        .foreach { rs => out.write(rs.string("name")) }
    }
    

    或者直接在scalikejdbc.DBSession上设置fetchSize:

    val (e, c) = (Emp.syntax("e"), Cmp.syntax("c"))
     
    DB readOnly { implicit session =>
      session.fetchSize(1000)
     
      withSQL { select(e.name).from(Emp as e) }.foreach { rs => 
        out.write(rs.string(e.name) 
      }
      withSQL { select(c.name).from(Cmp as c) }.foreach { rs => 
        out.write(rs.string(c.name)) 
      }
    }
    

    实现自定义的抽取器(Extractor)

    def toMap(rs: WrappedResultSet): Map[String, Any] =  {
      (1 to rs.metaData.getColumnCount).foldLeft(Map[String, Any]()) { (result, i) =>
        val label = rs.metaData.getColumnLabel(i)
        Some(rs.any(label)).map { nullableValue => result + (label -> nullableValue) }.getOrElse(result)
      }
    }
     
    sql"select * from emp".map(rs => toMap(rs)).single.apply()
    

    使用ParameterBinder

    ParameterBinder[A]使得我们可以在ScalikeJDBC中自定义如何将参数和PreparedStatement进行绑定。下面的例子将展示如何在InputStream和PreparedStatement进行绑定的情况使用ResultSet#setBinaryStream:

    sql"create table blob_example (id bigint, data blob)").execute.apply()
     
    val bytes = scala.Array[Byte](1, 2, 3, 4, 5, 6, 7)
     
    val bytesBinder = ParameterBinder[InputStream](
      value = new ByteArrayInputStream(bytes),
      binder = (stmt: PreparedStatement, idx: Int) => stmt.setBinaryStream(idx, in, bytes.length)
    )
     
    sql"insert into blob_example (data) values (${bytesBinder})").update.apply()
    

    5.2 更新API

    update最终运行的是java.sql.PreparedStatement#executeUpdate()

    import scalikejdbc._
     
    DB localTx { implicit session =>
      sql"""insert into emp (id, name, created_at) values (${id}, ${name}, ${DateTime.now})"""
        .update.apply()
      val id = sql"insert into emp (name, created_at) values (${name}, current_timestamp)"
        .updateAndReturnGeneratedKey.apply()
      sql"update emp set name = ${newName} where id = ${id}".update.apply()
      sql"delete emp where id = ${id}".update.apply()
    }
     
    val column = Emp.column
    DB localTx { implicit s =>
      withSQL {
        insert.into(Emp).namedValues(
          column.id -> id,
          column.name -> name,
          column.createdAt -> DateTime.now)
       }.update.apply()
     
      val id: Long = withSQL {
        insert.into(Empy).namedValues(column.name -> name, column.createdAt -> sqls.currentTimestamp)
      }.updateAndReturnGeneratedKey.apply()
     
      withSQL { update(Emp).set(column.name -> newName).where.eq(column.id, id) }.update.apply()
      withSQL { delete.from(Emp).where.eq(column.id, id) }.update.apply()
    }
    

    5.3 Execute API

    execute最终运行的是java.sql.PreparedStatement#execute().

    DB autoCommit { implicit session =>
      sql"create table emp (id integer primary key, name varchar(30))".execute.apply()
    }
     
    // QueryDSL doesn't support DDL yet.
    

    5.4 批处理(Batch)API

    batch和batchByName最终运行的是java.sql.PreparedStatement#executeBatch()

    import scalikejdbc._
     
    DB localTx { implicit session =>
      val batchParams: Seq[Seq[Any]] = (2001 to 3000).map(i => Seq(i, "name" + i))
      sql"insert into emp (id, name) values (?, ?)".batch(batchParams: _*).apply()
    }
     
    DB localTx { implicit session =>
      sql"insert into emp (id, name) values ({id}, {name})"
        .batchByName(Seq(Seq('id -> 1, 'name -> "Alice"), Seq('id -> 2, 'name -> "Bob")):_*)
        .apply()
    }
     
    val column = Emp.column
    DB localTx { implicit session =>
      val batchParams: Seq[Seq[Any]] = (2001 to 3000).map(i => Seq(i, "name" + i))
      withSQL {
        insert.into(Emp).namedValues(column.id -> sqls.?, column.name -> sqls.?)
      }.batch(batchParams: _*).apply()
    }
    
  • 相关阅读:
    oop klass

    广义表
    Huffman树
    二叉搜索树
    二叉树的前序、中序、后序、层序遍历
    循环链表解决约瑟夫环问题
    搭建局域网SVN代码服务器
    【CheckList】精简用例,提升执行效率,减少漏测(总结篇)
    测试资源不同时,如何有针对性的设计测试用例?
  • 原文地址:https://www.cnblogs.com/aixing/p/13327396.html
Copyright © 2020-2023  润新知