• Spark高级数据分析——纽约出租车轨迹的空间和时间数据分析


    Spark高级数据分析——纽约出租车轨迹的空间和时间数据分析

    原文地址:https://www.jianshu.com/p/eb6f3e0c09b5
    作者:IIGEOywq

    一、地理空间分析:

    object RunGeoTime extends Serializable {
    
      val formatter = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.ENGLISH)
    
      def main(args: Array[String]): Unit = {
    
        /*--------------1.初始化SparkContext-------------------*/
        val sc = new SparkContext(new SparkConf().setAppName("SpaceGeo"))
    
        /*--------------2.读取HDFS数据-------------------*/
        val taxiRaw = sc.textFile("hdfs://master:9000/taxidata")
    
        /*--------------3.出租车数据预处理------------------*/
        //3.1 利用自定义的safe函数处理原始数据
        val safeParse = safe(parse)
        val taxiParsed = taxiRaw.map(safeParse)
        //taxiParsed数据持久化
        taxiParsed.cache()
    
        //查看非法数据
       /* val taxiBad = taxiParsed.collect({
          case t if t.isRight => t.right.get
        })*/
    
        //collect返回到驱动器,为了单机开发和测试使用,不建议集群使用
        //taxiBad.collect().foreach(println)
    
    
        /*val taxiGood = taxiParsed.collect({
          case t if t.isLeft => t.left.get
        })
        taxiGood.cache()*/
    
        //3.2 剔除非法数据结果,获得正确格式的数据
        val taxiGood=taxiParsed.filter(_.isLeft).map(_.left.get)
        taxiGood.cache()
    
        //自定义一次打车的乘坐时间函数
        def hours(trip: Trip): Long = {
          val d = new Duration(trip.pickupTime, trip.dropoffTime)
          d.getStandardHours
        }
        //3.3 打印统计乘客上下车时间的记录,打印结果如执行分析结果图中的1
        taxiGood.values.map(hours).countByValue().toList.sorted.foreach(println)
        taxiParsed.unpersist()
    
        //根据上面的输出结果,统计一次乘车时间大于0小于3小时的记录
        val taxiClean = taxiGood.filter {
          case (lic, trip) => {
            val hrs = hours(trip)
            0 <= hrs && hrs < 3
          }
        }
    
        /*--------------4.出租车数据空间分析------------------*/
        //4.1 获取纽约行政区划数据
        val geojson = scala.io.Source.fromURL(getClass.getResource("/nyc-boroughs.geojson")).mkString
        //转换为地理要素
        val features = geojson.parseJson.convertTo[FeatureCollection]
    
        val areaSortedFeatures = features.sortBy(f => {
          val borough = f("boroughCode").convertTo[Int]
          (borough, -f.geometry.area2D())
        })
    
        val bFeatures = sc.broadcast(areaSortedFeatures)
        //4.2 判断乘客下车点落在那个行政区
        def borough(trip: Trip): Option[String] = {
          val feature: Option[Feature] = bFeatures.value.find(f => {
            f.geometry.contains(trip.dropoffLoc)
          })
          feature.map(f => {
            f("borough").convertTo[String]
          })
        }
        //4.3 第一次统计打印各行政区下车点的记录,打印结果如执行分析结果图中的2
        taxiClean.values.map(borough).countByValue().foreach(println)
    
        
        //4.4 剔除起点和终点数据缺失的数据
        def hasZero(trip: Trip): Boolean = {
          val zero = new Point(0.0, 0.0)
          (zero.equals(trip.pickupLoc) || zero.equals(trip.dropoffLoc))
        }
    
        val taxiDone = taxiClean.filter {
          case (lic, trip) => !hasZero(trip)
        }.cache()
    
        //4.5 踢出零点数据后统计打印各行政区下车点的记录,打印结果如执行分析结果图中的3
        taxiDone.values.map(borough).countByValue().foreach(println)
        taxiGood.unpersist()
    
        //输出地理空间分析结果到HDFS
        //taxiDone.saveAsTextFile("hdfs://master:9000/GeoResult")
    
      }
    
      //字符串转double
      def point(longitude: String, latitude: String): Point = {
        new Point(longitude.toDouble, latitude.toDouble)
      }
    
      //获取taxiraw RDD记录中的出租车司机驾照和Trip对象
      def parse(line: String): (String, Trip) = {
        val fields = line.split(',')
        val license = fields(1)
        // Not thread-safe:
        val formatterCopy = formatter.clone().asInstanceOf[SimpleDateFormat]
        val pickupTime = new DateTime(formatterCopy.parse(fields(5)))
        val dropoffTime = new DateTime(formatterCopy.parse(fields(6)))
        val pickupLoc = point(fields(10), fields(11))
        val dropoffLoc = point(fields(12), fields(13))
    
        val trip = Trip(pickupTime, dropoffTime, pickupLoc, dropoffLoc)
        (license, trip)
      }
    
      //非法记录数据处理函数
      def safe[S, T](f: S => T): S => Either[T, (S, Exception)] = {
        new Function[S, Either[T, (S, Exception)]] with Serializable {
          def apply(s: S): Either[T, (S, Exception)] = {
            try {
              Left(f(s))
            } catch {
              case e: Exception => Right((s, e))
            }
          }
        }
      }
    
    }
    

    二、pom.xml

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
    
      <modelVersion>4.0.0</modelVersion>
    
      <groupId>com.cloudera.datascience.geotime</groupId>
      <artifactId>ch08-geotime</artifactId>
      <packaging>jar</packaging>
      <name>Temporal and Geospatial Analysis</name>
      <version>2.0.0</version>
    
      <dependencies>
       <!--注意 scala版本对应spark集群中scala的版本,provided属性要加上 -->
        <dependency>
          <groupId>org.scala-lang</groupId>
          <artifactId>scala-library</artifactId>
          <version>2.11.8</version>
          <scope>provided</scope>
        </dependency>
        <!--注意 hadoop版本对应spark集群中hadoop的版本,provided属性要加上 -->
        <dependency>
          <groupId>org.apache.hadoop</groupId>
          <artifactId>hadoop-client</artifactId>
          <version>2.7.3</version>
          <scope>provided</scope>
        </dependency>
        <!--注意 spark版本对应spark集群中spark的版本,2.11是对应的scala版本 -->
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-core_2.11</artifactId>
          <version>2.0.1</version>
          <scope>provided</scope>
        </dependency>
        <!--nscala-time时间处理库,2.11是对应的scala版本 -->
        <dependency>
          <groupId>com.github.nscala-time</groupId>
          <artifactId>nscala-time_2.11</artifactId>
          <version>1.8.0</version>
        </dependency>
        <!--esri空间关系库,2.11是对应的scala版本 -->
        <dependency>
          <groupId>com.esri.geometry</groupId>
          <artifactId>esri-geometry-api</artifactId>
          <version>1.2.1</version>
        </dependency>
        <dependency>
          <groupId>io.spray</groupId>
          <artifactId>spray-json_2.11</artifactId>
          <version>1.3.2</version>
        </dependency>
        <dependency>
          <groupId>joda-time</groupId>
          <artifactId>joda-time</artifactId>
          <version>2.9.4</version>
        </dependency>
      </dependencies>
    
      <build>
        <plugins>
         <!--scala-maven插件必须加上,否则打包后无主程序 -->
          <plugin>
            <groupId>net.alchim31.maven</groupId>
            <artifactId>scala-maven-plugin</artifactId>
            <version>3.2.2</version>
            <configuration>
              <scalaVersion>2.11.8</scalaVersion>
              <scalaCompatVersion>2.11.8</scalaCompatVersion>
              <args>
                <arg>-unchecked</arg>
                <arg>-deprecation</arg>
                <arg>-feature</arg>
              </args>
              <javacArgs>
                <javacArg>-source</javacArg>
                <javacArg>1.8.0</javacArg>
                <javacArg>-target</javacArg>
                <javacArg>1.8.0</javacArg>
              </javacArgs>
            </configuration>
            <executions>
              <execution>
                <phase>compile</phase>
                <goals>
                  <goal>compile</goal>
                </goals>
              </execution>
            </executions>
          </plugin>
           <!--maven-assembly插件可以打包应用的依赖包 -->
          <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-assembly-plugin</artifactId>
            <version>2.6</version>
            <configuration>
              <archive>
                <manifest>
                  <mainClass>com.cloudera.datascience.geotime.RunGeoTime</mainClass>
                </manifest>
              </archive>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
              <recompressZippedFiles>false</recompressZippedFiles>
            </configuration>
            <executions>
              <execution>
                <id>make-assembly</id> <!-- 用于maven继承项目的聚合 -->
                <phase>package</phase> <!-- 绑定到package阶段 -->
                <goals>
                  <goal>single</goal>
                </goals>
              </execution>
            </executions>
          </plugin>
        </plugins>
      </build>
    
    </project>
    
    
  • 相关阅读:
    扩展欧几里得
    Android中进行流量统计
    经常使用的DB2命令(2)
    构建下一代服务载体,智能设备这座宝藏该怎么挖?
    Oracle 11g新特性虚拟列分区
    Convert Sorted List to Binary Search Tree
    c#高效的线程安全队列ConcurrentQueue<T>(上)
    String、StringBuffer与StringBuilder之间区别
    C# 中的委托和事件
    利用C#自带组件强壮程序日志
  • 原文地址:https://www.cnblogs.com/aixing/p/13327379.html
Copyright © 2020-2023  润新知