• Spark JDBC系列--取数的四种方式




    一、二、三、四标题原文地址:

    简书:wuli_小博:Spark JDBC系列–取数的四种方式



    一、单分区模式

    函数:

    def jdbc(url: String, table: String, properties: Properties): DataFrame
    

    使用示例:

    val url = "jdbc:mysql://mysqlHost:3306/database"
    val tableName = "table"
    
    // 设置连接用户&密码
    val prop = new java.util.Properties
    prop.setProperty("user","username")
    prop.setProperty("password","pwd")
    
    // 取得该表数据
    val jdbcDF = sqlContext.read.jdbc(url,tableName,prop)
    
    // 一些操作
    ....
    

    从入参可以看出,只需要传入JDBC URL、表名及对应的账号密码Properties即可。但是计算此DF的分区数后发现,这种不负责任的写法,并发数是1

    jdbcDF.rdd.partitions.size=1
    

    操作大数据集时,spark对MySQL的查询语句等同于可怕的:select * from table; ,而单个分区会把数据都集中在一个executor,当遇到较大数据集时,都会产生不合理的资源占用:MySQL可能hang住,spark可能会OOM,所以不推荐生产环境使用;

    二、指定Long型column字段的分区模式

    函数:

    def jdbc(
      url: String,
      table: String,
      columnName: String,
      lowerBound: Long,
      upperBound: Long,
      numPartitions: Int,
      connectionProperties: Properties): DataFrame
    

    使用id做分片字段的示例:

    val url = "jdbc:mysql://mysqlHost:3306/database"
    val tableName = "table"
    val columnName = "id"
    val lowerBound = getMinId()
    val upperBound = getMaxId()
    val numPartitions = 200
    
    // 设置连接用户&密码
    val prop = new java.util.Properties
    prop.setProperty("user","username")
    prop.setProperty("password","pwd")
    
    // 取得该表数据
    val jdbcDF = sqlContext.read.jdbc(url,tableName, columnName, lowerBound, upperBound,numPartitions,prop)
    
    // 一些操作
    ....
    

    从入参可以看出,通过指定 id 这个数字型的column作为分片键,并设置最大最小值和指定的分区数,可以对数据库的数据进行并发读取。是不是numPartitions传入多少,分区数就一定是多少呢?其实不然,通过对源码的分析可知:

    if upperBound-lowerBound >= numPartitions:
        jdbcDF.rdd.partitions.size = numPartitions
    else
        jdbcDF.rdd.partitions.size = upperBound-lowerBound
    

    拉取数据时,spark会按numPartitions均分最大最小ID,然后进行并发查询,并最终转换成RDD,例如:

    入参为:
    lowerBound=1, upperBound=1000, numPartitions=10
    
    对应查询语句组为:
    JDBCPartition(id < 101 or id is null,0), 
    JDBCPartition(id >= 101 AND id < 201,1), 
    JDBCPartition(id >= 201 AND id < 301,2), 
    JDBCPartition(id >= 301 AND id < 401,3), 
    JDBCPartition(id >= 401 AND id < 501,4), 
    JDBCPartition(id >= 501 AND id < 601,5), 
    JDBCPartition(id >= 601 AND id < 701,6), 
    JDBCPartition(id >= 701 AND id < 801,7), 
    JDBCPartition(id >= 801 AND id < 901,8), 
    JDBCPartition(id >= 901,9)
    

    建议在使用此方式进行分片时,需要评估好 numPartitions 的个数,防止单片数据过大;同时需要column字段的索引建立情况,防止查询语句出现慢SQL影响取数效率。
    如果column的数字是离散型的,为了防止拉取时出现过多空分区,以及不必要的一些数据倾斜,需要使用特殊手段进行处理,具体可以参考Spark JDBC系列–读取优化。

    三、高自由度的分区模式

    函数:

    def jdbc(
      url: String,
      table: String,
      predicates: Array[String],
      connectionProperties: Properties): DataFrame
    

    使用给定分区数组的示例:

      /**
       * 将近90天的数据进行分区读取
       * 每一天作为一个分区,例如
       * Array(
       * "2015-09-17" -> "2015-09-18",
       * "2015-09-18" -> "2015-09-19",
       * ...)
       **/
       def getPredicates = {
        
        val cal = Calendar.getInstance()
        cal.add(Calendar.DATE, -90)
        val array = ArrayBuffer[(String,String)]()
        for (i <- 0 until 90) {
          val start = new SimpleDateFormat("yyyy-MM-dd").format(cal.getTime())
          cal.add(Calendar.DATE, +1)
          val end = new SimpleDateFormat("yyyy-MM-dd").format(cal.getTime())
          array += start -> end
        }
        val predicates = array.map {
          case (start, end) => s"gmt_create >= '$start' AND gmt_create < '$end'"
        }
        
        predicates.toArray
        }
        
        val predicates = getPredicates
        //链接操作
        ...
    

    从函数可以看出,分区数组是多个并行的自定义where语句,且分区数为数据size:

    jdbcDF.rdd.partitions.size = predicates.size
    

    建议在使用此方式进行分片时,需要评估好 predicates.size 的个数,防止防止单片数据过大;同时需要自定义where语句的查询效率,防止查询语句出现慢SQL影响取数效率。

    四、自定义option参数模式

    函数示例:

    val jdbcDF = sparkSession.sqlContext.read.format("jdbc")
      .option("url", url)
      .option("driver", "com.mysql.jdbc.Driver")
      .option("dbtable", "table")
      .option("user", "user")
      .option("partitionColumn", "id")
      .option("lowerBound", 1)
      .option("upperBound", 10000)
      .option("fetchsize", 100)
      .option("xxx", "xxx")
      .load()
    

    从函数可以看出,option模式其实是一种开放接口,spark会根据具体的参数,来决定使用上述三种方式中的某一种。

    在这里插入图片描述

    五、JDBC To Other Databases

    Spark官方API文档:
    JDBC To Other Databases

    5.1Scala

    // Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
    // Loading data from a JDBC source
    val jdbcDF = spark.read
      .format("jdbc")
      .option("url", "jdbc:postgresql:dbserver")
      .option("dbtable", "schema.tablename")
      .option("user", "username")
      .option("password", "password")
      .load()
    
    val connectionProperties = new Properties()
    connectionProperties.put("user", "username")
    connectionProperties.put("password", "password")
    val jdbcDF2 = spark.read
      .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)
    // Specifying the custom data types of the read schema
    connectionProperties.put("customSchema", "id DECIMAL(38, 0), name STRING")
    val jdbcDF3 = spark.read
      .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)
    
    // Saving data to a JDBC source
    jdbcDF.write
      .format("jdbc")
      .option("url", "jdbc:postgresql:dbserver")
      .option("dbtable", "schema.tablename")
      .option("user", "username")
      .option("password", "password")
      .save()
    
    jdbcDF2.write
      .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)
    
    // Specifying create table column data types on write
    jdbcDF.write
      .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)")
      .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)
    

    5.2Java

    // Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
    // Loading data from a JDBC source
    Dataset<Row> jdbcDF = spark.read()
      .format("jdbc")
      .option("url", "jdbc:postgresql:dbserver")
      .option("dbtable", "schema.tablename")
      .option("user", "username")
      .option("password", "password")
      .load();
    
    Properties connectionProperties = new Properties();
    connectionProperties.put("user", "username");
    connectionProperties.put("password", "password");
    Dataset<Row> jdbcDF2 = spark.read()
      .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties);
    
    // Saving data to a JDBC source
    jdbcDF.write()
      .format("jdbc")
      .option("url", "jdbc:postgresql:dbserver")
      .option("dbtable", "schema.tablename")
      .option("user", "username")
      .option("password", "password")
      .save();
    
    jdbcDF2.write()
      .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties);
    
    // Specifying create table column data types on write
    jdbcDF.write()
      .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)")
      .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties);
    

    5.3Python

    # Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
    # Loading data from a JDBC source
    jdbcDF = spark.read 
        .format("jdbc") 
        .option("url", "jdbc:postgresql:dbserver") 
        .option("dbtable", "schema.tablename") 
        .option("user", "username") 
        .option("password", "password") 
        .load()
    
    jdbcDF2 = spark.read 
        .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
              properties={"user": "username", "password": "password"})
    
    # Specifying dataframe column data types on read
    jdbcDF3 = spark.read 
        .format("jdbc") 
        .option("url", "jdbc:postgresql:dbserver") 
        .option("dbtable", "schema.tablename") 
        .option("user", "username") 
        .option("password", "password") 
        .option("customSchema", "id DECIMAL(38, 0), name STRING") 
        .load()
    
    # Saving data to a JDBC source
    jdbcDF.write 
        .format("jdbc") 
        .option("url", "jdbc:postgresql:dbserver") 
        .option("dbtable", "schema.tablename") 
        .option("user", "username") 
        .option("password", "password") 
        .save()
    
    jdbcDF2.write 
        .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
              properties={"user": "username", "password": "password"})
    
    # Specifying create table column data types on write
    jdbcDF.write 
        .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)") 
        .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
              properties={"user": "username", "password": "password"})
    
  • 相关阅读:
    PHP webserver 之 soap wsdl
    PHP webserver 之 soap 生成wsdl文件
    PHP webserver 之 soap non-wsdl
    CodeForces 729A Interview with Oleg (模拟)
    CodeForces 727A Transformation: from A to B (DFS)
    POJ 3111 K Best (二分)
    POJ 2456 Aggressive cows (二分)
    POJ 1064 Cable master(二分)
    POJ
    Codeforces 869B
  • 原文地址:https://www.cnblogs.com/aixing/p/13327277.html
Copyright © 2020-2023  润新知