mySQL集群(cluster)
这一章,我根本不打算写,因为mySQL 的 官方Cluster方案基本上都是bullshit,尤其是它的官方集群方案,竟然都无人维护了,而且mySQL集群完全可以用眼下另一种方案去做替换,根本无需做成cluster。
因此,在这一章为了不浪费读者的宝贵时间,我只会列出mySQL集群的几种比较方案,目前有一些第三方提供的mySQL集群方案还是不错的选择。MySQL的cluster方案有很多官方和第三方的选择,选择多就是一种烦恼,因此,我们考虑MySQL数据库满足下三点需求并来考察市面上可行的解决方案:
- 高可用性:主服务器故障后可自动切换到后备服务器
- 可伸缩性:可方便通过脚本增加DB
- 服务器负载均衡:支持手动把某公司的数据请求切换到另外的服务器,可配置哪些公司的数据服务访问哪个服务器
这是我列出的时下市面上比较流行的几种mySQL集群方案中一些核心功能的比较,供参考:
推荐第三方mySQL集群方案
综合比较下来,笔者推荐采用MySQL Fabric和MySQL Cluster方案,以及另外一种较成熟的集群方案Galera Cluster。
几种mySQL集群方案的比较
MySQLCluster
MySQL Cluster 是MySQL 官方集群部署方案,它的历史较久。支持通过自动分片支持读写扩展,通过实时备份冗余数据,是可用性最高的方案,声称可做到99.999%的可用性。
架构及实现原理:
mySQL cluster主要由三种类型的服务组成:
NDB Management Server:管理服务器主要用于管理cluster中的其他类型节点(Data Node和SQL Node),通过它可以配置Node信息,启动和停止Node。 SQL Node:在MySQL Cluster中,一个SQL Node就是一个使用NDB引擎的mysql server进程,用于供外部应用提供集群数据的访问入口。Data Node:用于存储集群数据;系统会尽量将数据放在内存中。
缺点及限制:
- 对需要进行分片的表需要修改引擎Innodb为NDB,不需要分片的可以不修改。
- NDB的事务隔离级别只支持Read Committed,即一个事务在提交前,查询不到在事务内所做的修改;而Innodb支持所有的事务隔离级别,默认使用Repeatable Read,不存在这个问题。
- 外键支持:虽然最新的Cluster版本已经支持外键,但性能有问题(因为外键所关联的记录可能在别的分片节点中),所以建议去掉所有外键。
- Data Node节点数据会被尽量放在内存中,对内存要求大。
- Serializable(串行化):一个事务在执行过程中完全看不到其他事务对数据库所做的更新(事务执行的时候不允许别的事务并发执行。事务串行化执行,事务只能一个接着一个地执行,而不能并发执行。)。
- Repeatable Read(可重复读):一个事务在执行过程中可以看到其他事务已经提交的新插入的记录,但是不能看到其他其他事务对已有记录的更新。
- Read Commited(读已提交数据):一个事务在执行过程中可以看到其他事务已经提交的新插入的记录,而且能看到其他事务已经提交的对已有记录的更新。
- Read Uncommitted(读未提交数据):一个事务在执行过程中可以看到其他事务没有提交的新插入的记录,而且能看到其他事务没有提交的对已有记录的更新。
MySQL Fabric
为了实现和方便管理MySQL 分片以及实现高可用部署,Oracle在2014年5月推出了一套为各方寄予厚望的MySQL产品 -- MySQL Fabric, 用来管理MySQL 服务,提供扩展性和容易使用的系统,Fabric当前实现了两个特性:高可用和使用数据分片实现可扩展性和负载均衡,这两个特性能单独使用或结合使用。
MySQL Fabric 使用了一系列的python脚本实现。
应用案例:由于该方案在去年才推出,目前在网上暂时没搜索到有大公司的应用案例。
架构及实现原理:
Fabric支持实现高可用性的架构图如下
Fabric使用HA组实现高可用性,其中一台是主服务器,其他是备份服务器, 备份服务器通过同步复制实现数据冗余。应用程序使用特定的驱动,连接到Fabric 的Connector组件,当主服务器发生故障后,Connector自动升级其中一个备份服务器为主服务器,应用程序无需修改。
Fabric支持可扩展性及负载均衡的架构如下:
使用多个HA 组实现分片,每个组之间分担不同的分片数据(组内的数据是冗余的,这个在高可用性中已经提到)
应用程序只需向connector发送query和insert等语句,Connector通过MasterGroup自动分配这些数据到各个组,或从各个组中组合符合条件的数据,返回给应用程序。
缺点及限制:
影响比较大的两个限制是:
自增长键不能作为分片的键;事务及查询只支持在同一个分片内,事务中更新的数据不能跨分片,查询语句返回的数据也不能跨分片。
分片:如何支持可扩展性和负载均衡
当一台机器或一个组承受不了服务压力后,可以添加服务器分摊读写压力,通过Fabirc的分片功能可以将某些表中数据分散存储到不同服务器。我们可以设定分配数据存储的规则,通过在表中设置分片key设置分配的规则。另外,有些表的数据可能并不需要分片存储,需要将整张表存储在同一个服务器中,可以将设置一个全局组(Global Group)用于存储这些数据,存储到全局组的数据会自动拷贝到其他所有的分片组中。
Galera Cluster
Galera Cluster号称是世界上最先进的开源数据库集群方案。
主要优点及特性:
真正的多主服务模式:多个服务能同时被读写,不像Fabric那样某些服务只能作备份用同步复制:无延迟复制,不会产生数据丢失热备用:当某台服务器当机后,备用服务器会自动接管,不会产生任何当机时间自动扩展节点:新增服务器时,不需手工复制数据库到新的节点支持InnoDB引擎对应用程序透明:应用程序不需作修改。
架构及实现原理:
首先,我们看看传统的基于mysql Replication(复制)的架构图:
Replication方式是通过启动复制线程从主服务器上拷贝更新日志,让后传送到备份服务器上执行,这种方式存在事务丢失及同步不及时的风险。Fabric以及传统的主从复制都是使用这种实现方式。
而Galera则采用以下架构保证事务在所有机器的一致性。
客户端通过Galera Load Balancer访问数据库,提交的每个事务都会通过wsrep API 在所有服务器中执行,要不所有服务器都执行成功,要不就所有都回滚,保证所有服务的数据一致性,而且所有服务器同步实时更新。
缺点及限制:
由于同一个事务需要在集群的多台机器上执行,因此网络传输及并发执行会导致性能上有一定的消耗。所有机器上都存储着相同的数据,全冗余。若一台机器既作为主服务器,又作为备份服务器,出现乐观锁导致rollback的概率会增大,编写程序时要小心。不支持的SQL:LOCK / UNLOCK TABLES / GET_LOCK(), RELEASE_LOCK()…不支持XA Transaction
目前基于Galera Cluster的实现方案有三种:Galera Cluster for MySQL、Percona XtraDB Cluster、MariaDB Galera Cluster。
我们采用较成熟、应用案例较多的Percona XtraDB Cluster。
应用案例:
超过2000多家外国企业使用
Fabric对比Galera
mySQL连接数优化
mysql> show variables like 'max_connections';
+-----------------+-------+
|
Variable_name | Value |
+-----------------+-------+
|
max_connections | 800 |
+-----------------+-------+
#### 这台服务器最大连接数是256,然后查询一下该服务器响应的最大连接数;
mysql> show global status like 'Max_used_connections';
+----------------------+-------+
|
Variable_name | Value |
+----------------------+-------+
|
Max_used_connections | 245 |
+----------------------+-------+
#### MySQL服务器过去的最大连接数是245,没有达到服务器连接数的上线800,不会出现1040错误。
#### Max_used_connections /max_connections * 100% = 85%
#### 最大连接数占上限连接数的85%左右,如果发现比例在10%以下,则说明MySQL服务器连接数的上限设置得过高了。
key_buffer_size
mysql> show variables like 'key_buffer_size';
+-----------------+-----------+
|
Variable_name | Value |
+-----------------+-----------+
|
key_buffer_size | 536870912 |
+-----------------+-----------+
#### 从上面可以看出,分配了512MB内存给key_buffer_size。再来看key_buffer_size的使用情况:
mysql> show global status like 'key_read%';
+-------------------+--------------+
|
Variable_name | Value |
+-------------------+-------+
|
Key_read_requests | 27813678766 |
|
Key_reads | 6798830|
+-------------------+--------------+
一共有27813678766个索引读取请求,有6798830个请求在内存中没有找到,直接从硬盘读取索引。
key_cache_miss_rate = key_reads / key_read_requests * 100%
比如上面的数据,key_cache_miss_rate为0.0244%,4000%个索引读取请求才有一个直接读硬盘,效果已经很好了,key_cache_miss_rate在0.1%以下都很好,如果key_cache_miss_rate在0.01%以下的话,则说明key_buffer_size分配得过多,可以适当减少。
mySQL的临时表
mysql> show global status like 'created_tmp%';
+-------------------------+----------+
|
Variable_name | Value |
+-------------------------+----------+
|
Created_tmp_disk_tables | 21119 |
|
Created_tmp_files | 6 |
|
Created_tmp_tables | 17715532 |
+-------------------------+----------+
#### MySQL服务器对临时表的配置:
mysql> show variables where Variable_name in ('tmp_table_size','max_heap_table_size');
+---------------------+---------+
|
Variable_name | Value |
+---------------------+---------+
|
max_heap_table_size | 2097152 |
|
tmp_table_size | 2097152 |
+---------------------+---------+
每次创建临时表时,Created_tmp_table都会增加,如果磁盘上创建临时表,Created_tmp_disk_tables也会增加。Created_tmp_files表示MySQL服务创建的临时文件数,比较理想的配置是:
Created_tmp_disk_tables / Created_tmp_files *100% <= 25%
比如上面的服务器:
Created_tmp_disk_tables / Created_tmp_files *100% =1.20%,这个值就很棒了。
mySQL打开表的情况
mysql> show global status like 'open%tables%';
+---------------+-------+
|
Variable_name | Value |
+---------------+-------+
|
Open_tables | 351 |
|
Opened_tables | 1455 |
#### 查询下服务器table_open_cache;
mysql> show variables like 'table_open_cache';
+------------------+-------+
|
Variable_name | Value |
+------------------+-------+
|
table_open_cache | 2048 |
+------------------+-------+
如果Opened_tables数量过大,说明配置中table_open_cache的值可能太小。
比较合适的值为:
open_tables / opened_tables* 100% > = 85%
open_tables / table_open_cache* 100% < = 95%
mySQL的进程使用情况
mysql> show global status like 'thread%';
+-------------------+-------+
|
Variable_name | Value |
+-------------------+-------+
|
Threads_cached | 40|
|
Threads_connected | 1 |
|
Threads_created | 330 |
|
Threads_running | 1 |
+-------------------+-------+
#### 查询服务器thread_cache_size配置如下:
mysql> show variables like 'thread_cache_size';
+-------------------+-------+
|
Variable_name | Value |
+-------------------+-------+
|
thread_cache_size | 100 |
+-------------------+-------+
如果发现Threads_created的值过大的话,表明MySQL服务器一直在创建线程,这也是比较耗费资源的,可以适当增大配置文件中thread_cache_size的值。
查询缓存(query cache)
mysql> show global status like 'qcache%';
+-------------------------+-----------+
|
Variable_name | Value |
+-------------------------+-----------+
|
Qcache_free_blocks | 22756 |
|
Qcache_free_memory | 76764704 |
|
Qcache_hits | 213028692 |
|
Qcache_inserts | 208894227 |
|
Qcache_lowmem_prunes | 4010916 |
|
Qcache_not_cached | 13385031 |
|
Qcache_queries_in_cache | 43560 |
|
Qcache_total_blocks | 111212 |
+-------------------------+-----------+
MySQL查询缓存变量的相关解释如下:
- Qcache_free_blocks: 缓存中相领内存快的个数。数目大说明可能有碎片。flush query cache会对缓存中的碎片进行整理,从而得到一个空间块。
- Qcache_free_memory:缓存中的空闲空间。
- Qcache_hits:多少次命中。通过这个参数可以查看到Query Cache的基本效果。
- Qcache_inserts:插入次数,没插入一次查询时就增加1。命中次数除以插入次数就是命中比率。
- Qcache_lowmem_prunes:多少条Query因为内存不足而被清楚出Query Cache。通过Qcache_lowmem_prunes和Query_free_memory相互结合,能 够更清楚地了解到系统中Query Cache的内存大小是否真的足够,是否非常频繁地出现因为内存不足而有Query被换出的情况。
- Qcache_not_cached:不适合进行缓存的查询数量,通常是由于这些查询不是select语句或用了now()之类的函数。
- Qcache_queries_in_cache:当前缓存的查询和响应数量。
- Qcache_total_blocks:缓存中块的数量。
+------------------------------+---------+
|
Variable_name | Value |
+------------------------------+---------+
|
query_cache_limit | 1048576 |
|
query_cache_min_res_unit | 2048 |
|
query_cache_size | 2097152 |
|
query_cache_type | ON |
|
query_cache_wlock_invalidate | OFF |
+------------------------------+---------+
- query_cache_limit:超过此大小的查询将不缓存。
- query_cache_min_res_unit:缓存块的最小值。
- query_cache_size:查询缓存大小。
- query_cache_type:缓存类型,决定缓存什么样的查询,示例中表示不缓存select sql_no_cache查询。
- query_cache_wlock_invalidat:表示当有其他客户端正在对MyISAM表进行写操作,读请求是要等WRITE LOCK释放资源后再查询还是允许直接从Query Cache中读取结果,默认为OFF(可以直接从Query Cache中取得结果。)
- query_cache_min_res_unit的配置是一柄双刃剑,默认是4KB,设置值大对大数据查询有好处,但如果你的查询都是小数据查询,就容易造成内存碎片和浪费。
- 查询缓存碎片率 = Qcache_free_blocks /Qcache_total_blocks * 100%
- 如果查询碎片率超过20%,可以用 flush query cache 整理缓存碎片,或者试试减少query_cache_min_res_unit,如果你查询都是小数据库的话。
- 查询缓存利用率 = (Qcache_free_size – Qcache_free_memory)/query_cache_size * 100% 。查询缓存利用率在25%一下的话说明query_cache_size设置得过大,可适当减少;查询缓存利用率在80%以上而且Qcache_lowmem_prunes > 50的话则说明query_cache_size可能有点小,不然就是碎片太多。
- 查询命中率 = (Qcache_hits - Qcache_insert)/Qcache)hits * 100%,比如説:服务器中的查询缓存碎片率等于20%左右,查询缓存利用率在50%,查询命中率在2%,说明命中率很差,可能写操作比较频繁,而且可能有些碎片。
mySQL排序使用情况
mysql> show global status like 'sort%';
+-------------------+----------+
|
Variable_name | Value |
+-------------------+----------+
|
Sort_merge_passes | 10 |
|
Sort_range | 37431240 |
|
Sort_rows | 6738691532 |
|
Sort_scan | 1823485 |
+-------------------+----------+
Sort_merge_passes包括如下步骤:MySQL首先会尝试在内存中做排序,使用的内存大小由系统变量sort_buffer_size来决定,如果它不够大则把所有的记录都读在内存中,而MySQL则会把每次在内存中排序的结果存到临时文件中,等MySQL找到所有记录之后,再把临时文件中的记录做一次排序。这次再排序就会增加sort_merge_passes。实际上,MySQL会用另外一个临时文件来存储再次排序的结果,所以我们通常会看sort_merge_passes增加的数值是建临时文件数的两倍。因为用到了临时文件,所以速度可能会比较慢,增大sort_buffer_size会减少sort_merge_passes和创建临时文件的次数,但盲目地增大sort_buffer_size并不一定能提高速度。