• [LeetCode#129]Sum Root to Leaf Numbers


    The problem:

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

    An example is the root-to-leaf path 1->2->3 which represents the number 123.

    Find the total sum of all root-to-leaf numbers.

    For example,

        1
       / 
      2   3
    

    The root-to-leaf path 1->2 represents the number 12.
    The root-to-leaf path 1->3 represents the number 13.

    Return the sum = 12 + 13 = 25.

    My first analysis:

    Key:

    1. we search on the tree, and record all pathes in an ArrayList as return value. 

    2. we add the number(represented by each ArrayList) to get the final result. 

    possible pitfall: 

    We usually use sum += val to get the total sum.

    However it's not suitable for this case, since we have already use "sub_sum * 10 + ret.get(i).get(j)" for representing current value.

    You must be very carful about this!!!

    My first solution: 

    Note: sub_sum = sub_sum * 10 + ret.get(i).get(j), not  sub_sum + = sub_sum * 10 + ret.get(i).get(j)
    public class Solution {
        public int sumNumbers(TreeNode root) {
            if (root == null) 
                return 0;
            
            ArrayList<ArrayList<Integer>> ret = new ArrayList<ArrayList<Integer>> ();
            ArrayList<Integer> ans = new ArrayList<Integer>();
            
            get_path(root, ans, ret);
            
            int sum = 0;
            int sub_sum = 0;
            for (int i = 0; i < ret.size(); i++) {
                for (int j = 0; j < ret.get(i).size(); j++) {
                    sub_sum = sub_sum * 10 + ret.get(i).get(j); //not sub_sum += sub_sum * 10 + ret.get(i).get(j);   
                }
                sum += sub_sum;
                sub_sum = 0;
            }
            return sum;
        }
        
        private void get_path(TreeNode cur_root, ArrayList<Integer> ans, ArrayList<ArrayList<Integer>> ret) {
         
            if (cur_root == null)
                return;
                
            ArrayList<Integer> cur_list = new ArrayList<Integer> (ans);
            cur_list.add(cur_root.val);
        
            if (cur_root.left == null && cur_root.right == null) {
                ret.add(cur_list);
                return;
            }
            
            get_path(cur_root.left, cur_list, ret);
            get_path(cur_root.right, cur_list, ret);
        }
    }

    A more advanced analysis:

    This quesition involves the testing on whether I have really understand the recursion. The idea underlying the short solution is really very elegant! It's different from the tradition problem we have encountered in following ways:
    1. we won't record(reach) the answers at the lowest recursion level. In fact, since we want to compute the overall sum, we should not think of getting the answer at each branches(they are only partial!!!).
    2. we won't just return a simple -1 or true back. This time we return the result from left-sub tree and right-sub tree. 
    3. we make some prceess at the current level, and then pass it to next recursion level, and wait the next recursion level to return the value back. 

    My second solution:

    public class Solution {
        public int sumNumbers(TreeNode root) {
            
            return helper(root, 0);    
        }
        
        private int helper(TreeNode root, int sum) { //the sum is a little misleading!!! take care!
            
            if (root == null)
                return 0; 
            
            if (root.left == null && root.right == null)
                return sum * 10 + root.val;
            
            return helper(root.left, sum * 10 + root.val) + helper(root.right, sum * 10 + root.val);
        }
    }
  • 相关阅读:
    js中return的作用
    jstl标签详解总结
    css——overflow属性用法
    oracle数据批处理
    SQL Server 2000/2005 分页SQL — 单条SQL语句
    dataset和实体类 之间的转换
    barmanager设置
    C#集合类(HashTable, Dictionary, ArrayList)与HashTable线程安全
    comboboxEdit 不能输入,只能选择
    C#在父窗口中调用子窗口的过程(无法访问已释放的对象)
  • 原文地址:https://www.cnblogs.com/airwindow/p/4214686.html
Copyright © 2020-2023  润新知