Description
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input 5 5 4 3 4 2 3 2 1 2 2 5 Sample Output 2
题意:
有n头牛比赛,m种比赛结果,最后问你一共有多少头牛的排名被确定了,其中如果a战胜b,b战胜c,则也可以说a战胜c,即可以传递胜负。求能确定排名的牛的数目。
思路:
如果一头牛被x头牛打败,打败y头牛,且x+y=n-1,则我们容易知道这头牛的排名就被确定了,所以我们只要将任何两头牛的胜负关系确定了,在遍历所有牛判断一下是否满足x+y=n-1,将满足这个条件的牛数目加起来就是所求解。如果出度+入度=顶点数-1,则能够确定其编号。
代码:
#include<stdio.h> #include<iostream> #include<algorithm> #include<cstring> using namespace std; int map[110][110]; int n,m; void floyd() { for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(map[i][k]==1&&map[k][j]==1)//关系传递 map[i][j]=1; } int main() { cin>>n>>m; memset(map,0,sizeof(map)); for(int i=0;i<m;i++) { int a,b; cin>>a>>b; map[a][b]=1;//单向边 } floyd(); int ans=0; for(int i=1;i<=n;i++) { int sum=0; for(int j=1;j<=n;j++) { if((map[i][j]==1||map[j][i]==1)&&i!=j) sum++;//计算出度和入度 } if(sum==n-1) ans++; } cout<<ans; }