• kafka知识体系-副本同步机制


    本系列主要讲解kafka基本设计和原理分析,分如下内容:

    1. 基本概念
    2. 消息模型
    3. kafka副本同步机制
    4. kafka文件存储机制
    5. kafka数据可靠性和一致性保证
    6. kafka leader选举
    7. kafka消息传递语义
    8. Kafka集群partitions/replicas默认分配解析

    kafka副本同步机制

    Kafka中主题的每个Partition有一个预写式日志文件,每个Partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到Partition中,Partition中的每个消息都有一个连续的序列号叫做offset, 确定它在分区日志中唯一的位置。

    Kafka每个topic的partition有N个副本,其中N是topic的复制因子。Kafka通过多副本机制实现故障自动转移,当Kafka集群中一个Broker失效情况下仍然保证服务可用。在Kafka中发生复制时确保partition的预写式日志有序地写到其他节点上。N个replicas中。其中一个replica为leader,其他都为follower,leader处理partition的所有读写请求,与此同时,follower会被动定期地去复制leader上的数据。

    如下图所示,Kafka集群中有4个broker, 某topic有3个partition,且复制因子即副本个数也为3:

    Kafka提供了数据复制算法保证,如果leader发生故障或挂掉,一个新leader被选举并被接受客户端的消息成功写入。Kafka确保从同步副本列表中选举一个副本为leader,或者说follower追赶leader数据。leader负责维护和跟踪ISR(In-Sync Replicas的缩写,表示副本同步队列,具体可参考下节)中所有follower滞后的状态。当producer发送一条消息到broker后,leader写入消息并复制到所有follower。消息提交之后才被成功复制到所有的同步副本。消息复制延迟受最慢的follower限制,重要的是快速检测慢副本,如果follower“落后”太多或者失效,leader将会把它从ISR中删除。

    副本同步队列(ISR)
    所谓同步,必须满足如下两个条件:

    • 副本节点必须能与zookeeper保持会话(心跳机制)
    • 副本能复制leader上的所有写操作,并且不能落后太多。(卡住或滞后的副本控制是由 replica.lag.time.max.ms 配置)

    默认情况下Kafka对应的topic的replica数量为1,即每个partition都有一个唯一的leader,为了确保消息的可靠性,通常应用中将其值(由broker的参数offsets.topic.replication.factor指定)大小设置为大于1,比如3。 所有的副本(replicas)统称为Assigned Replicas,即AR。ISR是AR中的一个子集,由leader维护ISR列表,follower从leader同步数据有一些延迟。任意一个超过阈值都会把follower剔除出ISR, 存入OSR(Outof-Sync Replicas)列表,新加入的follower也会先存放在OSR中。AR=ISR+OSR。

    上一节中的HW俗称高水位,是HighWatermark的缩写,取一个partition对应的ISR中最小的LEO作为HW,consumer最多只能消费到HW所在的位置。另外每个replica都有HW,leader和follower各自负责更新自己的HW的状态。对于leader新写入的消息,consumer不能立刻消费,leader会等待该消息被所有ISR中的replicas同步后更新HW,此时消息才能被consumer消费。这样就保证了如果leader所在的broker失效,该消息仍然可以从新选举的leader中获取。对于来自内部broKer的读取请求,没有HW的限制。
    下图详细的说明了当producer生产消息至broker后,ISR以及HW和LEO的流转过程:

    由此可见,Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的follower都复制完,这条消息才会被commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follower都还没有复制完,落后于leader时,突然leader宕机,则会丢失数据。而Kafka的这种使用ISR的方式则很好的均衡了确保数据不丢失以及吞吐率。

    Kafka的ISR的管理最终都会反馈到Zookeeper节点上。具体位置为:/brokers/topics/[topic]/partitions/[partition]/state。目前有两个地方会对这个Zookeeper的节点进行维护:

    • Controller来维护:Kafka集群中的其中一个Broker会被选举为Controller,主要负责Partition管理和副本状态管理,也会执行类似于重分配partition之类的管理任务。在符合某些特定条件下,Controller下的LeaderSelector会选举新的leader,ISR和新的leader_epoch及controller_epoch写入Zookeeper的相关节点中。同时发起LeaderAndIsrRequest通知所有的replicas。
    • leader来维护:leader有单独的线程定期检测ISR中follower是否脱离ISR, 如果发现ISR变化,则会将新的ISR的信息返回到Zookeeper的相关节点中。

    副本不同步的异常情况

    • 慢副本:在一定周期时间内follower不能追赶上leader。最常见的原因之一是I / O瓶颈导致follower追加复制消息速度慢于从leader拉取速度。
    • 卡住副本:在一定周期时间内follower停止从leader拉取请求。follower replica卡住了是由于GC暂停或follower失效或死亡。
    • 新启动副本:当用户给主题增加副本因子时,新的follower不在同步副本列表中,直到他们完全赶上了leader日志。

    关于作者
    爱编程、爱钻研、爱分享、爱生活
    关注分布式、高并发、数据挖掘
    如需捐赠,请扫码

  • 相关阅读:
    图的广度优先遍历,运用了数据结构,感觉非常好用,等会把深度优先遍历也用数据结构写一遍
    DFS之素数环问题
    图的深度优先遍历
    八皇后的详细解答,纯手打,求推荐!!!
    c++中priority_queue的用法
    c++中vector的用法
    #ifndef是什么意思????
    筛法求1000000以内素数个数---时间复杂度为o(n)
    C++中1/0和1/0.0的区别
    C++程序生成.exe文件,在文件夹中运行时闪现问题
  • 原文地址:https://www.cnblogs.com/aidodoo/p/8873163.html
Copyright © 2020-2023  润新知