Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7
6
思路:这题是真正的水题,直接套用模板QAQ
#include<bits/stdc++.h>
using namespace std;
long long PowerMod(long long a, long long b, long long c)
{
long long ans = 1;
a = a % c; //对刚进来的a进行取模运算,避免后面第一次求平方运算溢出
while(b)
{
if(b&1) //相当于b % 2 = = 1对二进制下的 b 进行按位与1运算,求二进制下 b 的最低位是否为1
ans = ans * a % c; //对结果进行保存
b>>=1; //相当于b = b/2;二进制下的 b 右移一位,相当于十进制下的 b 除以2
a = a * a % c;
}
return ans;
}
int main()
{
long long t,n,m;
cin>>t;
while(t--)
{
cin>>n;
m=PowerMod(n,n,10);
cout<<m<<endl;
}
return 0;
}