• TensorFlow基础笔记(13) Mobilenet训练测试mnist数据


    主要是四个文件

    mnist_train.py

    #coding: utf-8
    import os
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    import mnist_inference
    
    BATCH_SIZE = 100
    LEARNING_RATE_BASE = 0.8
    LEARNING_RATE_DECAY = 0.99
    REGULARAZTION_RATE = 0.0001
    TRAINING_STEPS =10000
    MOVING_AVERAGE_DECAY = 0.99
    MODEL_SAVE_PATH = "./mobilenet_v1_model/"
    MODEL_NAME = "model.ckpt"
    channels = 1
    
    def train_MLP(mnist):
        x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
        regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    
        y = mnist_inference.inference_MLP(x, regularizer)
    
        global_step = tf.Variable(0, trainable=False)
    
        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        variable_averages_op = variable_averages.apply(tf.trainable_variables())
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
        learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    
        with tf.control_dependencies([train_step, variable_averages_op]):
            train_op = tf.no_op(name='train')
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            tf.initialize_all_variables().run()
    
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
    
                if i % 1000 == 0:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                    # print os.path.join(MODEL_SAVE_PATH, MODEL_NAME)
                    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
    
    
    def train_mobilenet(mnist):
        x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
        regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    
        #mobilenet 把输入数据变成与w矩阵同纬度的
        x_image = tf.reshape(x, [-1,28,28,1])
        x_image = tf.image.resize_image_with_crop_or_pad(x_image, 28*4,28*4)
        y = mnist_inference.inference_mobilenet(x_image, regularizer)
    
        global_step = tf.Variable(0, trainable=False)
    
        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        variable_averages_op = variable_averages.apply(tf.trainable_variables())
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        loss = cross_entropy_mean #+ tf.add_n(tf.get_collection('losses'))
        learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    
        with tf.control_dependencies([train_step, variable_averages_op]):
            train_op = tf.no_op(name='train')
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            tf.initialize_all_variables().run()
    
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
    
                if i % 1000 == 0:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                    # print os.path.join(MODEL_SAVE_PATH, MODEL_NAME)
                    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
                else:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
    
    def main(argv=None):
        mnist = input_data.read_data_sets("../MNIST_data", one_hot=True)
        train_mobilenet(mnist)
    
    if __name__ == '__main__':
        tf.app.run()

    mnist_eval.py

    #coding: utf-8
    import time
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    import mnist_inference
    import mnist_train
    
    #every 10 sec load the newest model
    EVAL_INTERVAL_SECS = 10
    
    def evaluate_MLP(mnist):
        with tf.Graph().as_default() as g:
            x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
            y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
            validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
    
            y = mnist_inference.inference(x, None)
    
            correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32))
    
            variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
            variable_to_restore = variable_averages.variables_to_restore()
            saver = tf.train.Saver(variable_to_restore)
    
            #while True:
            if 1:
                with tf.Session() as sess:
                    ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
                    if ckpt and ckpt.model_checkpoint_path:
                        #load the model
                        saver.restore(sess, ckpt.model_checkpoint_path)
                        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                        accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
                        print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score))
    
                    else:
                        print('No checkpoint file found')
                        return
                #time.sleep(EVAL_INTERVAL_SECS)
    
    def evaluate_mobilenet(mnist):
        with tf.Graph().as_default() as g:
            x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
            y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
    
    
            #mobilenet 把输入数据变成与w矩阵同纬度的
            x_image = tf.reshape(x, [-1,28,28,1])
            x_image = tf.image.resize_image_with_crop_or_pad(x_image, 28*4,28*4)
            y = mnist_inference.inference_mobilenet(x_image, None)
    
            correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32))
    
            variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
            variable_to_restore = variable_averages.variables_to_restore()
            saver = tf.train.Saver(variable_to_restore)
    
            input  = mnist.validation.images
            label = mnist.validation.labels
            batch_size = 100
            TEST_STEPS = input.shape[0] / batch_size
            sum_accury = 0.0
            #while True:
            if 1:
                with tf.Session() as sess:
                    ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
                    if ckpt and ckpt.model_checkpoint_path:
                        #load the model
                        saver.restore(sess, ckpt.model_checkpoint_path)
                        global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                        for i in range(int(TEST_STEPS)):
                            input_batch = input[i*batch_size : (i + 1)*batch_size, :]
                            label_batch = label[i*batch_size : (i + 1)*batch_size, :]
                            validate_feed = {x: input_batch, y_: label_batch}
                            # 取出部分数据测试
                            accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
                            sum_accury += accuracy_score
                            print("test %s batch steps, validation accuracy = %g" % (i, accuracy_score))
    
                    else:
                        print('No checkpoint file found')
                        return
                #time.sleep(EVAL_INTERVAL_SECS)
            print("After %s training steps, all validation accuracy = %g" % (global_step, sum_accury / TEST_STEPS))
    
    def main(argv=None):
        mnist = input_data.read_data_sets("../MNIST_data", one_hot=True)
        evaluate_mobilenet(mnist)
    
    if __name__ == '__main__':
        tf.app.run()

    mnist_inference.py

    #coding: utf-8
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import numpy as np
    import tensorflow as tf
    
    import mobilenet_v1
    
    slim = tf.contrib.slim
    
    
    #define the variables of nerual network
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    LAYER1_NODE = 500
    
    def get_weight_variable(shape, regularizer):
        weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
    
        if regularizer != None:
            tf.add_to_collection('losses', regularizer(weights))
    
        return weights
    
    #define the forward network with MLPnet
    def inference_MLP(input_tensor, regularizer):
        with tf.variable_scope('layer1'):
            weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
            biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
    
        with tf.variable_scope('layer2'):
            weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
            biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
            layer2 = tf.matmul(layer1, weights) + biases
    
        return layer2
    
    #define the forward network with mobilenet_v1
    def inference_mobilenet(input_tensor, regularizer):
        #inputs = tf.random_uniform((batch_size, height, width, 3))
        with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                          normalizer_fn=slim.batch_norm):
            logits, end_points = mobilenet_v1.mobilenet_v1(
                input_tensor,
                num_classes=OUTPUT_NODE,
                dropout_keep_prob=0.8,
                is_training=True,
                min_depth=8,
                depth_multiplier=1.0,
                conv_defs=None,
                prediction_fn=tf.contrib.layers.softmax,
                spatial_squeeze=True,
                reuse=None,
                scope='MobilenetV1',
                global_pool=False
            )
    
        return logits

    mobilenet_v1.py 

    从此处下载

    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py

  • 相关阅读:
    AppScan扫描教程
    iis发布网站可能遇到的问题及解决方法
    apache、nginx、iis日志记录的各个字段内容与含义
    nmap的使用教程
    ubuntu下编译wiringPi
    配置NAT
    华为OSPF与ACL综合应用实例讲解
    浮动静态路由及负载均衡
    静态路由及默认路由基本配置
    利用三层交换机实现VLAN间路由
  • 原文地址:https://www.cnblogs.com/adong7639/p/7942384.html
Copyright © 2020-2023  润新知