• UVA 10692 Huge Mod


    Problem X

    Huge Mod 

    Input: standard input

    Output: standard output

    Time Limit: 1 second

    2^3^4^5 mod 10 = ?The operator for exponentiation is different from the addition, subtraction, multiplication or division operators in the sense that the default associativity for exponentiation goes right to left instead of left to right. So unless we mess it up by placing parenthesis, 2^3^2 should mean2^(3^2)=2^9=512 not (2^3)^2=8^2=64. This leads to the obvious fact that if we take the levels of exponents higher (i.e., 2^3^4^5^3), the numbers can become quite big. But let's not make life miserable. We being the good guys would force the ultimate value to be no more than 10000.

    Given a1, a2, a3, ... , aN and m(=10000)
    you only need to compute a1^a2^a3^...^aN mod m.

    Input

    There can be multiple (not more than 100) test cases. Each test case will be presented in a single line. The first line of each test case would contain the value for M(2<=M<=10000). The next number of that line would be N(1<=N<=10). Then N numbers - the values for a1, a2, a3, ... , aN would follow. You can safely assume that 1<=ai<=1000. The end of input is marked by a line containing a single hash ('#') mark.

    Output

    For each of the test cases, print the test case number followed by the value of a1^a2^a3^...^aN mod m on one line. The sample output shows the exact format for printing the test case number.

    Sample Input

    Sample Output

    10 4 2 3 4 5 100 2 5 2 53 3 2 3 2 # 
    Case #1: 2 Case #2: 25 Case #3: 35

    题意:求出 a0^a1^a2......a^n%m的值。

    sl: 以前做过一个a^B mod 1e9+7 的题,那个很显然是费马小定理。碰见这个题目傻逼了。

    百度学习一翻知:A^x=A^(x%phi[[m]+phi[m]) (phi[m]<=x)   很显然一个递归的式子。

    哎,但是当时每次都是对x%phi[MOD] 傻叉了。应该递归求解。 

     坑了我4个点真吭。。。

  • 相关阅读:
    mutt+msmtp实现在shell环境中发送电子邮件
    rsync无密码备份文件的方法
    segemehl 生成sam文件的后续处理——生成methylation table
    ubuntu 14.04 安装VMware虚拟机
    完全用Linux工作
    Ubuntu 与CentOS 6.5 配置单网卡双IP
    How to use Bismark
    How to use segemehl
    Ubuntu 为火狐安装插件
    遇到的问题
  • 原文地址:https://www.cnblogs.com/acvc/p/3702412.html
Copyright © 2020-2023  润新知