• Codeforces Round #675 (Div. 2)


    http://codeforces.com/contest/1422/problem/D

    D. Returning Home

    一个n*n的图

    有些点就是可以瞬移  和象棋里车的规则一样,给你一些点,只要你在横纵坐标 就可以瞬移过去

    考虑对x,y的列和行建图就可以了

    #include <bits/stdc++.h>
    #define inf 0x3f3f3f3f
    #define inf64 0x3f3f3f3f3f3f3f3f
    using namespace std;
    typedef long long ll;
    const int maxn = 1e6+10;
    const int mod = 1e9+7;
    int head[maxn],nxt[maxn<<1],to[maxn<<1],w[maxn<<1],cnt;
    void add(int u,int v,ll c){
        // printf("u = %d v = %d c = %lld
    ", u,v,c);
        ++cnt,to[cnt]=v,w[cnt]=c,nxt[cnt]=head[u],head[u]=cnt;
        ++cnt,to[cnt]=u,w[cnt]=c,nxt[cnt]=head[v],head[v]=cnt;
    }
    
    struct heapnode{
        ll d,u;
        heapnode(ll d=0,ll u=0) : d(d),u(u) {}
        bool operator<(const heapnode &a) const{
            return a.d<d;
        }
    };
    ll d[maxn];
    bool vis[maxn];
    priority_queue<heapnode>que;
    void dijkstra(int s,int n){
        while(!que.empty()) que.pop();
        for(int i=0;i<=n;i++) d[i]=inf64,vis[i] = false;
        d[s]=0,que.push(heapnode(0,s));
        while(!que.empty()){
            heapnode x=que.top();que.pop();
            int u=x.u;
            if(vis[u]) continue;
            vis[u]=true;
            for(int i=head[u];i;i=nxt[i]){
                int v = to[i];
                if(d[v]>d[u]+w[i]){
                    d[v]=d[u]+w[i];
                    que.push(heapnode(d[v],v));
                }
            }
        }
    }
    
    int a[maxn],b[maxn],x[maxn],y[maxn];
    int main(){
        int n,m,sx,sy,gx,gy;
        scanf("%d%d",&n,&m);
        scanf("%d%d%d%d",&sx,&sy,&gx,&gy);
        for(int i=1;i<=m;i++){
            scanf("%d%d",&x[i],&y[i]);
            a[i] = x[i],b[i] = y[i];
        }
        sort(a+1,a+1+m);
        sort(b+1,b+1+m);
        add(0,3*m+1,abs(sx-gx)+abs(sy-gy));
        for(int i=2;i<=m;i++){
            add(i+m,i+m-1,abs(a[i]-a[i-1]));
            add(i+2*m,i+2*m-1,abs(b[i]-b[i-1]));
        }
        for(int i=1;i<=m;i++){
            add(0,i,min(abs(sx-x[i]),abs(sy-y[i])));
            add(i,3*m+1,abs(gx-x[i])+abs(gy-y[i]));
            int pos1 = lower_bound(a+1,a+1+m,x[i])-a;
            add(i,pos1+m,0);
            int pos2 = lower_bound(b+1,b+1+m,y[i])-b;
            add(i,pos2+2*m,0);
        }
        dijkstra(0,3*m+1);
        printf("%lld
    ", d[3*m+1]);
        return 0;
    }

    C. Bargain

    考虑 前缀对应后面多个后缀就可以了 求个后缀的后缀和

    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define io std::ios::sync_with_stdio(false)
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n){ll r=1%P;for (a%=P; n; a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    const int mod=1e9+7;
    const int maxn=1e5+10;
    ll pre[maxn],pree[maxn],suf[maxn],suff[maxn];
    char a[maxn];
    int main()
    {
    
    
        cin>>a+1;
        int n=strlen(a+1);
        ll ans=0;
        for(int i=1;i<=n;i++)
        {
            pre[i]=pre[i-1]*10+a[i]-'0';
            pre[i]%=mod;
            if(i!=n)
            ans+=pre[i];
            ans%=mod;
            pree[i]=pree[i-1]+pre[i];
            pree[i]%=mod;
        }
        ll cnt=1;
       // cout<<ans<<endl;
        for(int i=n;i>=1;i--)
        {
            suf[i]=suf[i+1]+cnt*(a[i]-'0');
            suf[i]%=mod;
            if(i!=1)
            ans+=suf[i];
            ans%=mod;
            suff[i]=suff[i+1]+suf[i];
            suff[i]%=mod;
            cnt*=10;
            cnt%=mod;
        }
        //cout<<ans<<endl;
        cnt=10;
        int num=1;
        for(int i=n-2;i>=1;i--)
          {
              ans+=pre[i]*cnt+suff[i+2];
              ans%=mod;
              num++;
              cnt+=qpow(10,num);
              cnt%=mod;
          }
          cout<<ans<<endl;
    
    }
  • 相关阅读:
    ViewPager+Fragmrnt最简单结合方法
    Microsoft SQL Server Version List(SQL Server 版本)
    hdu 2795 Billboard(线段树单点更新)
    面向对象程序设计的思想的长处
    iOS 友盟分享
    使用Broadcast实现android组件之间的通信
    jquery ui 分页插件 传入后台的连个參数名
    android adb常见问题的解决方法!
    UVa 11015
    优秀程序猿学习方法
  • 原文地址:https://www.cnblogs.com/acmLLF/p/13807389.html
Copyright © 2020-2023  润新知