• 【python】小型神经网络的搭建


      1 import numpy as np
      2 
      3 def sigmoid(x):
      4   # Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
      5   return 1 / (1 + np.exp(-x))
      6 
      7 def deriv_sigmoid(x):
      8   # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
      9   fx = sigmoid(x)
     10   return fx * (1 - fx)
     11 
     12 def mse_loss(y_true, y_pred):
     13   # y_true and y_pred are numpy arrays of the same length.
     14   return ((y_true - y_pred) ** 2).mean()
     15 
     16 class OurNeuralNetwork:
     17   '''
     18   A neural network with:
     19     - 2 inputs
     20     - a hidden layer with 2 neurons (h1, h2)
     21     - an output layer with 1 neuron (o1)
     22 
     23   *** DISCLAIMER ***:
     24   The code below is intended to be simple and educational, NOT optimal.
     25   Real neural net code looks nothing like this. DO NOT use this code.
     26   Instead, read/run it to understand how this specific network works.
     27   '''
     28   def __init__(self):
     29     # Weights
     30     self.w1 = np.random.normal()
     31     self.w2 = np.random.normal()
     32     self.w3 = np.random.normal()
     33     self.w4 = np.random.normal()
     34     self.w5 = np.random.normal()
     35     self.w6 = np.random.normal()
     36 
     37     # Biases
     38     self.b1 = np.random.normal()
     39     self.b2 = np.random.normal()
     40     self.b3 = np.random.normal()
     41 
     42   def feedforward(self, x):
     43     # x is a numpy array with 2 elements.
     44     h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
     45     h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
     46     o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
     47     return o1
     48 
     49   def train(self, data, all_y_trues):
     50     '''
     51     - data is a (n x 2) numpy array, n = # of samples in the dataset.
     52     - all_y_trues is a numpy array with n elements.
     53       Elements in all_y_trues correspond to those in data.
     54     '''
     55     learn_rate = 0.1
     56     epochs = 1000 # number of times to loop through the entire dataset
     57 
     58     for epoch in range(epochs):
     59       for x, y_true in zip(data, all_y_trues):
     60         # --- Do a feedforward (we'll need these values later)
     61         sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
     62         h1 = sigmoid(sum_h1)
     63 
     64         sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
     65         h2 = sigmoid(sum_h2)
     66 
     67         sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
     68         o1 = sigmoid(sum_o1)
     69         y_pred = o1
     70 
     71         # --- Calculate partial derivatives.
     72         # --- Naming: d_L_d_w1 represents "partial L / partial w1"
     73         d_L_d_ypred = -2 * (y_true - y_pred)
     74 
     75         # Neuron o1
     76         d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)
     77         d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
     78         d_ypred_d_b3 = deriv_sigmoid(sum_o1)
     79 
     80         d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
     81         d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)
     82 
     83         # Neuron h1
     84         d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
     85         d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
     86         d_h1_d_b1 = deriv_sigmoid(sum_h1)
     87 
     88         # Neuron h2
     89         d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
     90         d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
     91         d_h2_d_b2 = deriv_sigmoid(sum_h2)
     92 
     93         # --- Update weights and biases
     94         # Neuron h1
     95         self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
     96         self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
     97         self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1
     98 
     99         # Neuron h2
    100         self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
    101         self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
    102         self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2
    103 
    104         # Neuron o1
    105         self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
    106         self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
    107         self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
    108 
    109       # --- Calculate total loss at the end of each epoch
    110       if epoch % 10 == 0:
    111         y_preds = np.apply_along_axis(self.feedforward, 1, data)
    112         loss = mse_loss(all_y_trues, y_preds)
    113         print("Epoch %d loss: %.8f" % (epoch, loss))
    114 
    115 # Define dataset
    116 data = np.array([
    117   [-2, -1],  # Alice
    118   [25, 6],   # Bob
    119   [17, 4],   # Charlie
    120   [-15, -6], # Diana
    121 ])
    122 all_y_trues = np.array([
    123   1, # Alice
    124   0, # Bob
    125   0, # Charlie
    126   1, # Diana
    127 ])
    128 
    129 # Train our neural network!
    130 network = OurNeuralNetwork()
    131 network.train(data, all_y_trues)

    tz@croplab,HZAU

    2019/6/19

  • 相关阅读:
    xml技术基础
    apue第七章学习总结
    自然连接,外部连接,内连接,左右连接的区别与介绍(转)
    apue第六章学习总结
    《深入PHP与jQuery开发》读书笔记——Chapter2
    apue第四章学习总结
    《深入PHP与jQuery开发》读书笔记——Chapter1
    我所使用的一个通用的Makefile模板
    PHP的输出缓冲区(转)
    Nginx 日志按月分割
  • 原文地址:https://www.cnblogs.com/acm-icpcer/p/11050633.html
Copyright © 2020-2023  润新知