• Educational Codeforces Round 2 E


    题意:每个节点有个值,求每个节点子树众数和
    题解:可线段树合并,维护每个数出现次数和最大出现次数,以及最大出现次数的数的和

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    //#define C 0.5772156649
    //#define ls l,m,rt<<1
    //#define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    //#define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=100000+10,maxn=50000+10,inf=0x3f3f3f3f;
    
    vi v[N];
    int root[N*22];
    int ls[N*22],rs[N*22],tot,n;
    ll ans[N],sum[N*22],num[N*22],ma[N*22];
    void pushup(int o)
    {
        ma[o]=max(ma[ls[o]],ma[rs[o]]);
        if(ma[ls[o]]==ma[rs[o]])sum[o]=sum[ls[o]]+sum[rs[o]];
        else if(ma[ls[o]]>ma[rs[o]])sum[o]=sum[ls[o]];
        else sum[o]=sum[rs[o]];
    }
    inline int Merge(int x,int y,int l,int r)
    {
        if(l==r)
        {
            if(!x||!y)
            {
                ma[x+y]=num[x+y]=num[x]+num[y];
                sum[x+y]=l;
                return x+y;
            }
            else
            {
                ma[x]=num[x]=num[x]+num[y];
                sum[x]=l;
                return x;
            }
        }
        if(!x||!y)return x+y;
        int m=(l+r)>>1;
        ls[x]=Merge(ls[x],ls[y],l,m);
        rs[x]=Merge(rs[x],rs[y],m+1,r);
        pushup(x);
        return x;
    }
    void build(int &o,int pos,int l,int r)
    {
        if(!o)o=++tot;
        if(l==r)
        {
            ma[o]=num[o]=1;
            sum[o]=l;
            return ;
        }
        int m=(l+r)>>1;
        if(pos<=m)build(ls[o],pos,l,m);
        else build(rs[o],pos,m+1,r);
        pushup(o);
    }
    void debug(int o,int l,int r)
    {
        printf("%d+++%d %d %d %d %d
    ",o,sum[o],num[o],ma[o],l,r);
        if(l==r)return ;
        int m=(l+r)>>1;
        if(ls[o])debug(ls[o],l,m);
        if(rs[o])debug(rs[o],m+1,r);
    }
    void dfs(int u,int f)
    {
        for(int i=0;i<v[u].size();i++)
        {
            int x=v[u][i];
            if(x!=f)dfs(x,u);
        }
        for(int i=0;i<v[u].size();i++)
        {
            int x=v[u][i];
            if(x!=f)root[u]=Merge(root[u],root[x],1,n);
        }
        ans[u]=sum[root[u]];
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int x;scanf("%d",&x);
            build(root[i],x,1,n);
        }
        for(int i=1;i<n;i++)
        {
            int a,b;scanf("%d%d",&a,&b);
            v[a].pb(b),v[b].pb(a);
        }
        dfs(1,-1);
        for(int i=1;i<=n;i++)printf("%lld ",ans[i]);puts("");
        return 0;
    }
    /********************
    4
    1 2 2 4
    1 2
    2 3
    2 4
    ********************/
    

    也可dsu on tree,先轻重链剖分,每次递归时保留重儿子的子树信息,统计答案时,先递归轻儿子统计子树信息,然后统计完后删除信息,维护每个次数的和

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    //#define C 0.5772156649
    //#define ls l,m,rt<<1
    //#define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    //#define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=100000+10,maxn=50000+10,inf=0x3f3f3f3f;
    
    vi v[N];
    int c[N],sz[N],l[N],r[N],id[N],cnt,n;
    ll num[N],sum[N],maxx,ans[N];
    void dfs(int u,int f)
    {
        sz[u]=1;
        l[u]=++cnt;id[cnt]=u;
        for(int i=0;i<v[u].size();i++)
        {
            int x=v[u][i];
            if(x!=f)
            {
                dfs(x,u);
                sz[u]+=sz[x];
            }
        }
        r[u]=cnt;
    }
    void solve(int u,int f,bool keep)
    {
        int ma=-1,son=-1;
        for(int i=0;i<v[u].size();i++)
        {
            int x=v[u][i];
            if(x!=f&&ma<sz[x])ma=sz[x],son=x;
        }
        for(int i=0;i<v[u].size();i++)
        {
            int x=v[u][i];
            if(x!=f&&x!=son)solve(x,u,0);
        }
        if(son!=-1)solve(son,u,1);
        for(int i=0;i<v[u].size();i++)
        {
            int x=v[u][i];
            if(x!=f&&x!=son)for(int j=l[x];j<=r[x];j++)
            {
                sum[num[c[id[j]]]]-=c[id[j]];
                num[c[id[j]]]++;
                sum[num[c[id[j]]]]+=c[id[j]];
                maxx=max(maxx,num[c[id[j]]]);
            }
        }
        sum[num[c[u]]]-=c[u];
        num[c[u]]++;
        sum[num[c[u]]]+=c[u];
        maxx=max(maxx,num[c[u]]);
        ans[u]=sum[maxx];
        if(!keep)for(int i=l[u];i<=r[u];i++)
        {
            sum[num[c[id[i]]]]-=c[id[i]];
            num[c[id[i]]]--;
            sum[num[c[id[i]]]]+=c[id[i]];
            if(sum[maxx]==0)maxx--;
        }
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&c[i]);
            sum[0]+=i;
        }
        for(int i=1;i<n;i++)
        {
            int a,b;scanf("%d%d",&a,&b);
            v[a].pb(b),v[b].pb(a);
        }
        dfs(1,-1);
        solve(1,-1,0);
        for(int i=1;i<=n;i++)printf("%lld ",ans[i]);puts("");
        return 0;
    }
    /********************
    3
    1 2 3
    1 2
    1 3
    ********************/
    
  • 相关阅读:
    通过WebRTC实现实时视频通信(三)
    通过WebRTC实现实时视频通信(二)
    通关机器学习,必须掌握的32种算法
    Github如何回退/回滚到某个版本
    Markdown语法与入门
    如何上传代码到github?
    Latex中如何设置字体颜色(3种方式)
    Package CJK Error: Invalid character code. 问题解决方法--xelatex和pdflatex编译的转换
    PyCharm快捷键
    最全PyCharm教程
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9953361.html
Copyright © 2020-2023  润新知