• bzoj2154: Crash的数字表格 莫比乌斯反演


    题意:求(sum_{i=1}^n sum_{j=1}^mfrac{i*j}{gcd(i,j)})
    题解:(ans=sum_{i=1}^nsum_{j=1}^m frac{i*j}{gcd(i,j)})
    (=sum_{d=1}^{min(n,m)}dsum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{m}{d} floor}i*j[gcd(i,j)==1])
    (=sum_{d=1}^{min(n,m)}dsum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{m}{d} floor}i*j sum_{x|gcd(i,j)}mu(x))
    (=sum_{d=1}^{min(n,m)}dsum_{x=1}^{min(lfloor frac{n}{d} floor,lfloor frac{m}{d} floor)}x^2mu(x)sum_{i=1}^{lfloor frac{n}{d*x} floor}sum_{j=1}^{lfloor frac{m}{d*x} floor}i*j)
    最后里层和外层都能整除分块,sum可以处理成(mu*i^2)的前缀和,
    取模太多会T

    /**************************************************************
        Problem: 2154
        User: walfy
        Language: C++
        Result: Accepted
        Time:18528 ms
        Memory:167308 kb
    ****************************************************************/
     
    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 20101009
    #define ld long double
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
     
    using namespace std;
     
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=10000000+10,maxn=400000+10,inf=0x3f3f3f3f;
     
    int prime[N],cnt,mu[N];
    ll sum[N];
    bool mark[N];
    void init()
    {
        mu[1]=1;
        for(int i=2;i<N;i++)
        {
            if(!mark[i])prime[++cnt]=i,mu[i]=-1;
            for(int j=1;j<=cnt&&prime[j]*i<N;j++)
            {
                mark[prime[j]*i]=1;
                mu[prime[j]*i]=-mu[i];
                if(i%prime[j]==0){mu[prime[j]*i]=0;break;}
            }
        }
        for(ll i=1;i<N;i++)
        {
            sum[i]=sum[i-1]+i*i%mod*mu[i];
            add(sum[i],mod);
        }
    }
    ll F(ll n,ll m)
    {
        if(n>m)swap(n,m);
        ll ans=0;
        for(ll i=1,j;i<=n;i=j+1)
        {
            j=Min(n/(n/i),m/(m/i));
            ll t1=n/i,t2=m/i;
            t1=t1*(t1+1)/2;t2=t2*(t2+1)/2;
            t1%=mod,t2%=mod;
            ll te=(sum[j]-sum[i-1]);add(te,mod);
            add(ans,te*t1%mod*t2%mod);
        }
        return ans;
    }
    int main()
    {
        init();
        ll n,m;scanf("%lld%lld",&n,&m);
        if(n>m)swap(n,m);
        ll ans=0;
        for(ll i=1,j;i<=n;i=j+1)
        {
            j=Min(n/(n/i),m/(m/i));
            add(ans,((j+i)*(j-i+1)/2)%mod*F(n/i,m/i)%mod);
        }
        printf("%lld
    ",ans);
        return 0;
    }
    /********************
     
    ********************/
    
  • 相关阅读:
    微信客服系统开发SDK使用教程-给好友发消息任务
    微信客服系统开发SDK使用教程-客户端选择微信号登陆/登出通知
    微信客服系统开发SDK使用教程-客户端退出通知
    php优秀框架codeigniter学习系列——CI_Security类学习
    php优秀框架codeigniter学习系列——CI_Output类的学习
    php优秀框架codeigniter学习系列——CI_Router类学习
    My IELTS result has come out 我的雅思成绩出来了
    Travel notes in Vietnam
    asp.net学习
    makefile简单学习
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9460768.html
Copyright © 2020-2023  润新知