题意:在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。
题解:最长反链长度=最小链覆盖=可相交的最小路径覆盖=先传递闭包的不相交的最小路径覆盖=n-先传递闭包的最小二分图匹配
/**************************************************************
Problem: 1143
User: walfy
Language: C++
Result: Accepted
Time:76 ms
Memory:1300 kb
****************************************************************/
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0)
using namespace std;
const double eps=1e-6;
const int N=100+10,maxn=100000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
bool ma[N][N],used[N];
int co[N],n,m;
int match(int u)
{
for(int i=1;i<=n;i++)
{
if(!used[i]&&ma[u][i])
{
used[i]=1;
if(!co[i]||match(co[i]))
{
co[i]=u;
return 1;
}
}
}
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ma[a][b]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ma[i][j]|=(ma[i][k]&ma[k][j]);
int ans=0;
for(int i=1;i<=n;i++)
{
memset(used,0,sizeof used);
if(match(i))ans++;
}
printf("%d
",n-ans);
return 0;
}
/********************
********************/