The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题意:求四个数的和为0的情况有几种
题解:折半枚举+sort,,很重要的小技巧:upper_bound(a,a+n,s)-low_bound(a,a+n,s)表示a数组(已排序)里等于s的个数,
刚开始用if(all[lower_bound(all,all+n*n,-a[i]-b[j])-all]==-a[i]-b[j])处理wa了,发现原来是因为只算了一个相等的情况,要是有几个同时等于就漏了
View Code
#include<map> #include<set> #include<cmath> #include<queue> #include<stack> #include<vector> #include<cstdio> #include<iomanip> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #define pi acos(-1) #define ll long long #define mod 1000000007 using namespace std; const double g=10.0,eps=1e-9; const int N=4000+5,maxn=10000+5,inf=0x3f3f3f3f; ll a[N],b[N],c[N],d[N]; ll all[N*N]; int main() { ios::sync_with_stdio(false); cin.tie(0); // cout<<setiosflags(ios::fixed)<<setprecision(2); ll n; while(cin>>n){ for(ll i=0;i<n;i++)cin>>a[i]>>b[i]>>c[i]>>d[i]; for(ll i=0;i<n;i++) { for(ll j=0;j<n;j++) { all[i*n+j]=c[i]+d[j]; } } sort(all,all+n*n); ll ans=0; for(ll i=0;i<n;i++) { for(ll j=0;j<n;j++) { ans+=upper_bound(all,all+n*n,-a[i]-b[j])-lower_bound(all,all+n*n,-a[i]-b[j]); } } cout<<ans<<endl; } return 0; }