• Divide by Zero 2018 and Codeforces Round #474 (Div. 1 + Div. 2, combined)G


    题意:求满足条件的排列,1:从左往右会遇到a个比当前数大的数,(每次遇到更大的数会更换当前数)2.从右往左会遇到b个比当前数大的数.
    题解:1-n的排列,n肯定是从左往右和从右往左的最后一个数.
    考虑(S(n,m))是1-n排列中从左往右会遇到m个比当前数大的数,考虑把1放在最左边,即(S(n-1,m-1)),考虑1不在最左边,有n-1个位置,1不可能会更换((n-1)*S(n,m)).即(S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m))
    (S(n,m))即第一类斯特林数.答案即(S(n-1,a+b-2)*C(a+b-2,a-1))
    (S(n,*))的生成函数即(prod_{i=0}^{n-1}(x+i)),即x的n次上升幂.
    (F_n(x)=prod_{i=0}^{n-1}(x+i)),(F_n(x+n)=prod_{i=0}^{n-1}(x+n+i))
    (F_{2n}(x)=F_n(x)*F_n(x+n))
    (F_n(x)=sum_{i=0}^{n-1}a_ix^i),(F_n(x+n)=sum_{i=0}^{n-1}x^i*sum_{j=i}^{n-1}frac{j!}{i!*(j-i)!}n^{j-i}a_j)
    先卷积出(F_n(x+n)),然后卷积出(F_{2n}(x)),当n不能整除2时,单独考虑乘(x+n-1).
    递归处理,复杂度(O(nlogn))

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    //#include <bits/extc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define mt make_tuple
    //#define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 998244353
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define bpc __builtin_popcount
    #define base 1000000000000000000ll
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    #define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;}
    
    using namespace std;
    //using namespace __gnu_pbds;
    
    const ld pi = acos(-1);
    const ull ba=233;
    const db eps=1e-5;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=100000+10,maxn=2000000+10,inf=0x3f3f3f3f;
    
    ll x[N<<3],y[N<<3];
    int rev[N<<3];
    void getrev(int bit)
    {
        for(int i=0;i<(1<<bit);i++)
            rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
    }
    void ntt(ll *a,int n,int dft)
    {
        for(int i=0;i<n;i++)
            if(i<rev[i])
                swap(a[i],a[rev[i]]);
        for(int step=1;step<n;step<<=1)
        {
            ll wn=qp(3,(mod-1)/(step*2));
            if(dft==-1)wn=qp(wn,mod-2);
            for(int j=0;j<n;j+=step<<1)
            {
                ll wnk=1;
                for(int k=j;k<j+step;k++)
                {
                    ll x=a[k];
                    ll y=wnk*a[k+step]%mod;
                    a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
                    wnk=wnk*wn%mod;
                }
            }
        }
        if(dft==-1)
        {
            ll inv=qp(n,mod-2);
            for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
        }
    }
    ll f[N],inv[N];
    ll C(int a,int b)
    {
        if(a<b||a<0||b<0)return 0;
        return f[a]*inv[b]%mod*inv[a-b]%mod;
    }
    vi solve(int n)
    {
        if(n==1)
        {
            vi v={0,1};
            return v;
        }
        vi te=solve(n/2);
        int sz=0,m=te.size();
        while((1<<sz)<m)sz++;sz++;
        int len=1<<sz;
        getrev(sz);
        ll p=1;
        for(int i=0;i<m;i++)
        {
            x[i]=qp(n/2,m-i-1)*inv[m-i-1]%mod;
            y[i]=te[i]*f[i]%mod;
        }
        for(int i=m;i<len;i++)x[i]=y[i]=0;
        ntt(x,len,1);ntt(y,len,1);
        for(int i=0;i<len;i++)x[i]=x[i]*y[i]%mod;
        ntt(x,len,-1);
        for(int i=0;i<m;i++)y[i]=x[i+m-1]*inv[i]%mod;
        for(int i=0;i<m;i++)x[i]=te[i];
        for(int i=m;i<len;i++)x[i]=y[i]=0;
        ntt(x,len,1);ntt(y,len,1);
        for(int i=0;i<len;i++)x[i]=x[i]*y[i]%mod;
        ntt(x,len,-1);
        vi v;v.resize(len+1);
        if(n&1)
        {
            y[0]=n-1;y[1]=1;
            for(int i=0;i<len;i++)
                for(int j=0;j<2;j++)
                {
                    v[i+j]+=x[i]*y[j]%mod;
                    if(v[i+j]>=mod)v[i+j]-=mod;
                }
        }
        else
        {
            for(int i=0;i<len;i++)v[i]+=x[i];
        }
        while(v.size()&&v.back()==0)v.pop_back();
        return v;
    }
    int main()
    {
        f[0]=inv[0]=1;
        for(int i=1;i<N;i++)f[i]=f[i-1]*i%mod,inv[i]=inv[i-1]*qp(i,mod-2)%mod;
        int n,a,b;scanf("%d%d%d",&n,&a,&b);
        if(a+b-1>n)return 0*puts("0");
        if(n==1)
        {
            if(a==b&&a==1)puts("1");
            else puts("0");
            return 0;
        }
        vi v=solve(n-1);
        printf("%lld
    ",1ll*v[a+b-2]*C(a+b-2,a-1)%mod);
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    Android基本功:Socket
    Javascript模板及其中的数据逻辑分离思想
    MFC,QT与WinForm,WPF简介
    GPIB、USB、PCI、PCI Express和以太网/LAN/LXI
    Office批量授权(VL)版本和激活方法
    Labview 错误1400-打包库封装类时将对类重命名导致
    console.log()
    a标签中href=""的几种用法
    正斜杠"/"与反斜杠""
    提问的艺术
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/11567341.html
Copyright © 2020-2023  润新知