• Helvetic Coding Contest 2018 online mirror (teams allowed, unrated)F3


    题意:n个数字1-m,问取k个组成的set方案数
    题解:假设某个数出现k次,那么生成函数为(1+x+...+x^k),那么假设第i个数出现ai次,结果就是(sum_{i=1}^m(1+x+...+x^{a_i})),第k项即为答案,启发式合并fft即可
    组合(即set):普通生成函数.排列:指数型生成函数

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    //#include <bits/extc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define mt make_tuple
    //#define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1009
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define bpc __builtin_popcount
    #define base 1000000000000000000ll
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    #define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;}
    
    using namespace std;
    //using namespace __gnu_pbds;
    
    const ld pi = acos(-1);
    const ull ba=233;
    const db eps=1e-5;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=200000+10,maxn=2000000+10,inf=0x3f3f3f3f;
    
    struct cd{
        ld x,y;
        cd(ld _x=0.0,ld _y=0.0):x(_x),y(_y){}
        cd operator +(const cd &b)const{
            return cd(x+b.x,y+b.y);
        }
        cd operator -(const cd &b)const{
            return cd(x-b.x,y-b.y);
        }
        cd operator *(const cd &b)const{
            return cd(x*b.x - y*b.y,x*b.y + y*b.x);
        }
        cd operator /(const db &b)const{
            return cd(x/b,y/b);
        }
    }a[N<<3],b[N<<3];
    int rev[N<<3];
    void getrev(int bit)
    {
        for(int i=0;i<(1<<bit);i++)
            rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
    }
    void fft(cd *a,int n,int dft)
    {
        for(int i=0;i<n;i++)
            if(i<rev[i])
                swap(a[i],a[rev[i]]);
        for(int step=1;step<n;step<<=1)
        {
            cd wn(cos(dft*pi/step),sin(dft*pi/step));
            for(int j=0;j<n;j+=step<<1)
            {
                cd wnk(1,0);
                for(int k=j;k<j+step;k++)
                {
                    cd x=a[k];
                    cd y=wnk*a[k+step];
                    a[k]=x+y;a[k+step]=x-y;
                    wnk=wnk*wn;
                }
            }
        }
        if(dft==-1)for(int i=0;i<n;i++)a[i]=a[i]/n;
    }
    int c[N];
    struct info{
        vi v;
        int id;
        bool operator <(const info&rhs)const{
            return v.size()<rhs.v.size()||(v.size()==rhs.v.size()&&id<rhs.id);
        }
    };
    set<info>s;
    int main()
    {
        int n,m,k;scanf("%d%d%d",&n,&m,&k);
        for(int i=1,x;i<=n;i++)scanf("%d",&x),c[x]++;
        for(int i=1;i<=m;i++)if(c[i])
        {
            info te;te.v.clear();te.id=i;
            for(int j=0;j<=c[i];j++)te.v.pb(1);
            s.insert(te);
        }
        while(s.size()>=2)
        {
            info x=*s.begin();s.erase(s.begin());
            info y=*s.begin();s.erase(s.begin());
            int p=x.v.size(),q=y.v.size();
            int sz=0;
            while((1<<sz)<=p+q)sz++;
            getrev(sz);
            int len=(1<<sz);
            for(int i=0;i<len;i++)
            {
                a[i]=(i<p?x.v[i]:0);
                b[i]=(i<q?y.v[i]:0);
            }
            fft(a,len,1);fft(b,len,1);
            for(int i=0;i<len;i++)a[i]=a[i]*b[i];
            fft(a,len,-1);
            x.v.clear();
            for(int i=0;i<len;i++)x.v.pb(((ll)(a[i].x+0.5))%mod);
            while(x.v.size()&&x.v.back()==0)x.v.pop_back();
            s.insert(x);
        }
        printf("%d
    ",s.begin()->v[k]);
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    LocalSessionFactoryBean有几个属性查找hibernate映射文件
    关于Spring中配置LocalSessionFactoryBean来生成SessionFactory
    【Spring源码分析】配置文件读取流程
    Java序列化接口的作用总结1
    Java序列化接口的作用总结
    hibernate抓取策略
    170531、FormData 对象的使用
    170530、java 迭代hashmap常用的三种方法
    170529、springMVC 的工作原理和机制
    170526、spring 执行定时任务
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/11537261.html
Copyright © 2020-2023  润新知