• hdu6607 min25筛+杜教筛+伯努利数求k次方前缀和


    推导过程类似https://www.cnblogs.com/acjiumeng/p/9742073.html
    前面部分min25筛,后面部分杜教筛,预处理min25筛需要伯努利数

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    //#include <bits/extc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define mt make_tuple
    //#define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define sqr(x) ((x)*(x))
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define bpc __builtin_popcount
    #define base 1000000000000000000ll
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    #define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;}
    
    using namespace std;
    //using namespace __gnu_pbds;
    
    const ld pi=acos(-1);
    const ull ba=233;
    const db eps=1e-5;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=200000+10,maxn=10000000+10,inf=0x3f3f3f3f;
    
    bool mark[maxn];
    int prime[maxn],cnt,K,phi[maxn],cnt1,f[maxn];
    ll g[N],id[2][N],val[N],sum[N],up,n;
    ll inv2=qp(2,mod-2),inv6=qp(6,mod-2),inv[111],c[111][111],b[111];
    map<ll,ll>phii;
    ll getb(int n)
    {
        if(b[n]!=-1)return b[n];
        if(n==0)return b[0]=1;
        ll ans=0;
        for(int i=0;i<n;i++)
            add(ans,c[n+1][i]*getb(i)%mod);
        ans=-ans*inv[n+1]%mod;
        ans=(ans%mod+mod)%mod;
        return b[n]=ans;
    }
    ll get(ll n,ll k)
    {
        ll ans=0;
        for(int i=1;i<=k+1;i++)
            add(ans,c[k+1][i]*b[k+1-i]%mod*qp((n+1)%mod,i)%mod);
        return ans*inv[k+1]%mod;
    }
    void pre()
    {
        phi[1]=1;
        for(int i=2;i<maxn;i++)
        {
            if(!mark[i])prime[++cnt1]=i,phi[i]=i-1;
            for(int j=1;j<=cnt1&&i*prime[j]<maxn;j++)
            {
                mark[i*prime[j]]=1;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
        for(int i=1;i<maxn;i++)
        {
            f[i]=1ll*i*i%mod*phi[i]%mod;
            f[i]+=f[i-1];
            if(f[i]>=mod)f[i]-=mod;
        }
        inv[1]=1;
        for(ll i=2;i<111;i++)
            inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
        for(int i=0;i<111;i++)
        {
            c[i][0]=c[i][i]=1;
            for(int j=1;j<i;j++)
                c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
        }
        memset(b,-1,sizeof b);
        getb(110);
    }
    void init()
    {
        up=sqrt(n);
        for(int i=1;prime[i]<=up;i++)sum[i]=(sum[i-1]+qp(prime[i],K+1))%mod,cnt=i;
        int m=0;
        for(ll i=1,j;i<=n;i=j+1)
        {
            j=n/(n/i);
            val[++m]=n/i;
            g[m]=get(n/i,K+1);//insert val
            sub(g[m],1ll);
            if(n/i<=up)id[0][n/i]=m;
            else id[1][i]=m;
        }
        for(int j=1;j<=cnt;j++)for(int i=1;i<=m&&1ll*prime[j]*prime[j]<=val[i];i++)
        {
            ll te=val[i]/prime[j];
            int k=(te<=up)?id[0][te]:id[1][n/te];
            sub(g[i],1ll*(sum[j]-sum[j-1]+mod)*(g[k]-sum[j-1]+mod)%mod);
        }
    }
    ll getf(ll n)
    {
        if(n<maxn)return f[n];
        if(phii.find(n)!=phii.end())return phii[n];
        ll ans=n%mod*((n+1)%mod)%mod*inv2%mod;ans=ans*ans%mod;
        for(ll i=2,j;i<=n;i=j+1)
        {
            j=n/(n/i);
            ll tj=j%mod,ti=i%mod;
            ll te=tj*(tj+1)%mod*(2ll*tj+1)%mod*inv6%mod-(ti-1)*ti%mod*(2ll*ti-1)%mod*inv6%mod;
            te=(te%mod+mod)%mod;
            sub(ans,te*getf(n/i)%mod);
        }
        return phii[n]=ans;
    }
    int main()
    {
        pre();
        int T;scanf("%d",&T);
        while(T--)
        {
            scanf("%lld%d",&n,&K);
            init();
            ll ans=0;
            for(ll i=1,j;i<=n;i=j+1)
            {
                j=n/(n/i);
                int k1=(j<=up)?id[0][j]:id[1][n/j];
                int k2=(i-1<=up)?id[0][i-1]:id[1][n/(i-1)];
    //            printf("%lld %lld
    ",(g[k1]-g[k2]+mod)%mod,getf(n/i));
                add(ans,getf(n/i)*(g[k1]-g[k2]+mod)%mod);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    设计模式-抽象工厂模式
    设计模式-工厂方法模式
    设计模式-单例
    java集合-补充HashMapJDK1.8
    java多线程-线程池
    java-阻塞队列
    java多线程-信号量
    java多线程-读写锁
    java多线程-锁
    Ubuntu下编译Poco库
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/11372892.html
Copyright © 2020-2023  润新知