• min25筛


    时间复杂度(O(frac{n^{frac{3}{4}}}{log(n)})),空间(O(sqrt(n)))
    (phi)(mu)的前缀和

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    //#include <bits/extc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define mt make_tuple
    //#define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define sqr(x) ((x)*(x))
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define bpc __builtin_popcount
    #define base 1000000000000000000ll
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    #define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;}
    
    using namespace std;
    //using namespace __gnu_pbds;
    
    const ld pi=acos(-1);
    const ull ba=233;
    const db eps=1e-5;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=100000+10,maxn=1000000+10,inf=0x3f3f3f3f;
    
    bool mark[N];
    int prime[N],cnt;
    ll g[N],h[N],id[2][N],val[N],sum[N],up,n;
    ll S(ll x,int y)
    {
        if(x<=1||prime[y]>x)return 0;
        int k=(x<=up)?id[0][x]:id[1][n/x];
        ll ret=g[k]-h[k]-sum[y-1]+y-1;
        for(int i=y;i<=cnt&&1ll*prime[i]*prime[i]<=x;i++)
        {
            ll t1=prime[i],t2=1ll*prime[i]*prime[i];
            for(int j=1;t2<=x;t1=t2,t2*=prime[i],j++)
                ret+=S(x/t1,i+1)*(t1/prime[i]*(prime[i]-1))+(t2/prime[i]*(prime[i]-1));
        }
        return ret;
    }
    ll S1(ll x,int y)
    {
        if(x<=1||prime[y]>x)return 0;
        int k=(x<=up)?id[0][x]:id[1][n/x];
        ll ret=-h[k]+y-1;
        for(int i=y;i<=cnt&&1ll*prime[i]*prime[i]<=x;i++)
        {
            ll t1=prime[i],t2=1ll*prime[i]*prime[i];
            ret-=S1(x/t1,i+1);
        }
        return ret;
    }
    void init()
    {
        up=sqrt(n);
        cnt=0;
        memset(mark,0,sizeof mark);
        for(int i=2;i<=up;i++)
        {
            if(!mark[i])prime[++cnt]=i,sum[cnt]=sum[cnt-1]+i;
            for(int j=1;j<=cnt&&i*prime[j]<=up;j++)
            {
                mark[i*prime[j]]=1;
                if(i%prime[j]==0)break;
            }
        }
        int m=0;
        for(ll i=1,j;i<=n;i=j+1)
        {
            j=n/(n/i);
            val[++m]=n/i;
            g[m]=(n/i)*(n/i+1)/2-1;
            h[m]=n/i-1;
            if(n/i<=up)id[0][n/i]=m;
            else id[1][i]=m;
        }
        for(int j=1;j<=cnt;j++)for(int i=1;i<=m&&1ll*prime[j]*prime[j]<=val[i];i++)
        {
            ll te=val[i]/prime[j];
            int k=(te<=up)?id[0][te]:id[1][n/te];
            g[i]-=1ll*(sum[j]-sum[j-1])*(g[k]-sum[j-1]);
            h[i]-=h[k]-j+1;
        }
    }
    int main()
    {
        int T;scanf("%d",&T);
        while(T--)
        {
            scanf("%lld",&n);
            if(n==0){puts("0 0");continue;}
            init();
            printf("%lld %lld
    ",S(n,1)+1,S1(n,1)+1);
        }
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    pixijs shader 制作百叶窗效果
    pixijs shader 贴图溶解效果教程
    shadertoy使用教程
    pixijs shader教程
    glsl shader简明教程系列1
    javascript判断mp3是否播放完
    wxWidgets Tutorial
    NYOJ 214 最长上升子序列nlogn
    解决codeforces访问慢的问题
    dp 斯特林数 HDU2512一卡通大冒险
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/11369833.html
Copyright © 2020-2023  润新知