• Educational Codeforces Round 48 (Rated for Div. 2)G. Appropriate Team


    题意:求满足条件的(i,j)对数:(gcd(v,a_i)=x,lcm(v,a_j)=y)
    题解:(x|a_i,a_j|y),(x|y),考虑质因子p,假设a_i中p次数为a,x中次数为b,y为c,(a_j)为d;a>=b,c>=d.
    假设a>b,c>d,那么由于(gcd(v,a_i)=x),v中p的次数为b,由于(lcm(v,a_j)=y),那么(max(b,d)==c),又c>d,所以b=c<a和x|y矛盾,所以此时ij不满足条件
    其他情况同理,能证明当a>b,c>d不同时满足时,都能,满足条件,考虑y的质因子只有15个,二进制状压,表示1为a>b,0为a==b,那么当两个二进制数and起来为0时,ij对满足条件.
    分解质因子用泼辣的肉,and用fwt或者sosdp都行

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000009
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    //#define base 1000000000000000000
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    inline ll qm(ll a,ll b,ll c){ll ans=0;while(b){if(b&1)ans=(ans+a)%c;a=(a+a)%c;b>>=1;}return ans%c;}
    inline ll qpow(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=qm(ans,a,c)%c;a=qm(a,a,c)%c;b>>=1;}return ans;}
    
    using namespace std;
    
    const ull ba=233;
    const db eps=1e-10;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=200000+10,maxn=100000+10,inf=0x3f3f3f3f;
    
    int cnt;
    ll f[110];
    bool check(ll a,ll n,ll x,ll sum){
        ll judge=qpow(a,x,n);
        if (judge==n-1||judge==1)return 1;
        while (sum--){
            judge=qm(judge,judge,n);
            if (judge==n-1)return 1;
        }
        return 0;
    }
    bool miller(ll n){
        if (n<2)return 0;
        if (n==2)return 1;
        if ((n&1)==0)return 0;
        ll x=n-1,sum=0;
        while (x%2==0)x>>=1,sum++;
        for (ll i=1;i<=20;i++){
            ll a=rand()%(n-1)+1;
            if (!check(a,n,x,sum))return 0;
        }
        return 1;
    }
    ll pollard(ll n,ll c){
        ll x,y,d,i=1,k=2;
        x=rand()%n;y=x;
        while (1){
            i++;
            x=(qm(x,x,n)+c)%n;
            d=gcd(y-x,n);
            if (d<0)d=-d;
            if (d>1&&d<n)return d;
            if (y==x)return n;
            if (i==k)y=x,k<<=1;
        }
    }
    void Find(ll n){
        if(n==1)return;
        if (miller(n)){
            f[cnt++]=n;
            return ;
        }
        ll p=n;
        while (p>=n) p=pollard(p,rand()%(n-1)+1);
        Find(n/p);Find(p);
    }
    ll a[N],b[N],c[N];
    int cal(ll x,ll y)
    {
        int ans=0;
        while(x%y==0)ans++,x/=y;
        return ans;
    }
    void fwt_and(ll *a,int n,int dft)
    {
        for(int i=1;i<n;i<<=1)
            for(int j=0;j<n;j+=i<<1)
                for(int k=j;k<j+i;k++)
                {
                    if(dft==1)a[k]=a[k]+a[i+k];
                    else a[k]=a[k]-a[i+k];
                }
    }
    int main()
    {
        int n;ll x,y;scanf("%d%lld%lld",&n,&x,&y);
        if(y%x)return 0*puts("0");
        Find(y);
        sort(f,f+cnt);cnt=unique(f,f+cnt)-f;
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&a[i]);
            int p1=0,p2=0;
            for(int j=0;j<cnt;j++)if(cal(x,f[j])!=cal(y,f[j]))
            {
                p1+=(1<<j)*(cal(a[i],f[j])>cal(x,f[j]));
                p2+=(1<<j)*(cal(a[i],f[j])<cal(y,f[j]));
            }
            if(a[i]%x==0)b[p1]++;
            if(y%a[i]==0)c[p2]++;
        }
        fwt_and(b,(1<<cnt),1);fwt_and(c,(1<<cnt),1);
        for(int i=0;i<(1<<cnt);i++)b[i]=b[i]*c[i];
        fwt_and(b,(1<<cnt),-1);
        printf("%lld
    ",b[0]);
        return 0;
    }
    /********************
    
    ********************/
    
    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000009
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    //#define base 1000000000000000000
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    inline ll qm(ll a,ll b,ll c){ll ans=0;while(b){if(b&1)ans=(ans+a)%c;a=(a+a)%c;b>>=1;}return ans%c;}
    inline ll qpow(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=qm(ans,a,c)%c;a=qm(a,a,c)%c;b>>=1;}return ans;}
    
    using namespace std;
    
    const ull ba=233;
    const db eps=1e-10;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=200000+10,maxn=100000+10,inf=0x3f3f3f3f;
    
    int cnt;
    ll f[110];
    bool check(ll a,ll n,ll x,ll sum){
        ll judge=qpow(a,x,n);
        if (judge==n-1||judge==1)return 1;
        while (sum--){
            judge=qm(judge,judge,n);
            if (judge==n-1)return 1;
        }
        return 0;
    }
    bool miller(ll n){
        if (n<2)return 0;
        if (n==2)return 1;
        if ((n&1)==0)return 0;
        ll x=n-1,sum=0;
        while (x%2==0)x>>=1,sum++;
        for (ll i=1;i<=20;i++){
            ll a=rand()%(n-1)+1;
            if (!check(a,n,x,sum))return 0;
        }
        return 1;
    }
    ll pollard(ll n,ll c){
        ll x,y,d,i=1,k=2;
        x=rand()%n;y=x;
        while (1){
            i++;
            x=(qm(x,x,n)+c)%n;
            d=gcd(y-x,n);
            if (d<0)d=-d;
            if (d>1&&d<n)return d;
            if (y==x)return n;
            if (i==k)y=x,k<<=1;
        }
    }
    void Find(ll n){
        if(n==1)return;
        if (miller(n)){
            f[cnt++]=n;
            return ;
        }
        ll p=n;
        while (p>=n) p=pollard(p,rand()%(n-1)+1);
        Find(n/p);Find(p);
    }
    ll a[N];
    int b[N],c[N];
    int cal(ll x,ll y)
    {
        int ans=0;
        while(x%y==0)ans++,x/=y;
        return ans;
    }
    int main()
    {
        int n;ll x,y;scanf("%d%lld%lld",&n,&x,&y);
        if(y%x)return 0*puts("0");
        Find(y);
        sort(f,f+cnt);cnt=unique(f,f+cnt)-f;
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&a[i]);
            int p1=0,p2=0;
            for(int j=0;j<cnt;j++)if(cal(x,f[j])!=cal(y,f[j]))
            {
                p1+=(1<<j)*(cal(a[i],f[j])>cal(x,f[j]));
                p2+=(1<<j)*(cal(a[i],f[j])<cal(y,f[j]));
            }
            if(a[i]%x==0)b[p1]++;//,printf("%d %d
    ",i,p1);
            c[i]=p2;
        }
        for(int i=0;i<cnt;i++)for(int j=0;j<(1<<cnt);j++)
            if(j&(1<<i))b[j]+=b[j^(1<<i)];
        ll ans=0;
        for(int i=1;i<=n;i++)
        {
            if(y%a[i]!=0)continue;
            ans+=b[((1<<cnt)-1)^c[i]];
    //        printf("%d %d
    ",((1<<cnt)-1)^c[i],b[((1<<cnt)-1)^c[i]]);
        }
        printf("%lld
    ",ans);
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    JAVA 面向对象的扩展 内部类
    对于win10 更换JDK后 查询JDK路径还是原路径的解决办法
    懂得的懂
    稀疏数组转化二维数组
    Flume的安装配置
    CentOS7配置ip和ssh免密登录和hadoop环境
    AOP的使用和事务
    spring的个人理解
    单车月结算2-修改和删除功能
    单车月结算1
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/10505644.html
Copyright © 2020-2023  润新知