P1144 最短路计数
题目描述
给出一个(N)个顶点(M)条边的无向无权图,顶点编号为(1-N)。问从顶点(1)开始,到其他每个点的最短路有几条。
输入格式
第一行包含(2)个正整数(N,M),为图的顶点数与边数。
接下来(M)行,每行(2)个正整数(x,y),表示有一条顶点(x)连向顶点(y)的边,请注意可能有自环与重边。
输出格式
共NN行,每行一个非负整数,第ii行输出从顶点11到顶点ii有多少条不同的最短路,由于答案有可能会很大,你只需要输出(ans mod 100003)后的结果即可。如果无法到达顶点(i)则输出(0)。
输入输出样例
输入 #1
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
输出 #1
1
1
1
2
4
说明/提示
(1)到(5)的最短路有(4)条,分别为(2)条(1-2-4-5)和(2)条(1-3-4-5)(由于(4-5)的边有(2)条)。
对于(20\%)的数据,(N ≤ 100);
对于(60\%)的数据,(N ≤ 1000);
对于(100\%)的数据,(N<=1000000,M<=2000000)。
【思路】
最短路 , dijkstra
【题目大意】
从1到每一个点的最短路有多少条
【核心思路】
最短路有多少条?
完全可以在dijkstra或者SPFA的过程中求出来的
因为在松弛操作的时候
用y到x的边去松弛
如果这条边替换上去会使1到x的距离更近
那这个时候x的答案就会变为松到他y的最短路的个数
如果这条边替换上去和原来一样
那就是目前看来可以当做最短路
在x原来最短路个数的基础上加上到点y最短路的个数就可以了
【完整代码】
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9')
{
if(c == '-')fg = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
{
sum = sum * 10 + c - '0';
c = getchar();
}
return sum * fg;
}
const int Max = 2000006;
const int mo = 100003;
struct node
{
int y,ne;
}a[Max << 1];
int head[Max >> 1],sum = 0;
void add(int x,int y)
{
a[++ sum].y = y;
a[sum].ne = head[x];
head[x] = sum;
}
struct point
{
int x;
int w;
bool operator < (const point xx) const
{
return xx.w < w;
}
};
int dis[Max >> 1];
priority_queue<point>q;
int ans[Max >> 1];
bool use[Max >> 1];
void dj()
{
memset(dis,0x3f,sizeof(dis));
dis[1] = 0;
ans[1] = 1;
q.push((point){1,0});
while(!q.empty())
{
point qwq = q.top();
q.pop();
int x = qwq.x,w = qwq.w;
if(use[x] == true)
continue;
else
use[x] = true;
for(register int i = head[x];i != 0;i = a[i].ne)
{
int awa = a[i].y;
if(dis[awa] > dis[x] + 1)
{
dis[awa] = dis[x] + 1;
ans[awa] = ans[x];
if(use[awa] == false)
q.push((point){awa,dis[awa]});
}
else
if(dis[awa] == dis[x] + 1)
{
ans[awa] += ans[x];
ans[awa] %= mo;
}
}
}
}
int main()
{
int n = read(),m = read();
for(register int i = 1;i <= m;++ i)
{
int x = read(),y = read();
add(x,y);
add(y,x);
}
dj();
for(register int i = 1;i <= n;++ i)
cout << ans[i] << endl;
return 0;
}