题目大意
给定n种权值
给定m
(F_i表示权值和为i的二叉树个数)
求(F_1,F_2...F_m)
分析
安利博客
(F_d=F_L*F_R*C_{mid},L+mid+R=d)
(F(x)=frac {1+sqrt{1-4C(x)}}{2C(x)}=frac 2{1-sqrt{1-4C(x)}})
无解是因为(x=0)时(F(x)=1)
但是(limlimits_{x
ightarrow 0})时(1-sqrt{1-4C(x)}趋于0)
(F)趋于INF
同理可证(F(x)=frac {1-sqrt{1-4C(x)}}{2C(x)})是正确的
姿势
求逆和开根函数中
static开一些临时数组
写起来方便
但注意初始化
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int M=262145;
const LL Q=998244353;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n,m;
LL g,ig,iv2;
LL a[M],b[M];
int rev[M];
LL pwr(LL x,LL tms){
LL res=1;
for(;tms>0;tms>>=1){
if(tms&1) res=res*x%Q;
x=x*x%Q;
}
return res;
}
void NTT(LL *a,int N,int fl){
int i,j,k;
LL W,Wn,u,v;
for(i=0;i<N;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(N>>1):0);
for(i=0;i<N;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(i=2;i<=N;i<<=1){
if(fl==1) Wn=pwr(g,(Q-1)/i);
else Wn=pwr(ig,(Q-1)/i);
for(j=0;j<N;j+=i){
for(W=1,k=j;k<j+i/2;k++,W=W*Wn%Q){
u=a[k];
v=W*a[k+i/2]%Q;
a[k]=(u+v)%Q;
a[k+i/2]=((u-v)%Q+Q)%Q;
}
}
}
if(fl==-1){
LL iN=pwr(N,Q-2);
for(i=0;i<N;i++) a[i]=a[i]*iN%Q;
}
}
void INV(LL*a,LL *b,int len){
static LL g[M],tp[M];
if(len==1) b[0]=pwr(a[0],Q-2);
else{
int i;
INV(a,b,len>>1);
int N=len<<1;
for(i=0;i<(len>>1);i++) g[i]=b[i];
for(;i<N;i++) g[i]=b[i]=0;
for(i=0;i<len;i++) tp[i]=a[i];
for(;i<N;i++) tp[i]=0;
NTT(g,N,1);
NTT(tp,N,1);
for(i=0;i<N;i++) tp[i]=g[i]*g[i]%Q*tp[i]%Q;
NTT(tp,N,-1);
for(i=0;i<len;i++) b[i]=((2*b[i]%Q-tp[i])%Q+Q)%Q;
}
}
void SQR(LL*a,LL *b,int len){
static LL g[M],tp[M],inv_g[M];
if(len==1) b[0]=1;
else{
int i;
SQR(a,b,len>>1);
int N=len<<1;
for(i=0;i<(len>>1);i++) g[i]=b[i]%Q;
for(;i<N;i++) g[i]=b[i]=0;
for(i=0;i<N;i++) inv_g[i]=0;
INV(g,inv_g,len);
for(i=0;i<len;i++) tp[i]=a[i];
for(;i<N;i++) tp[i]=0;
NTT(inv_g,N,1);
NTT(tp,N,1);
for(i=0;i<N;i++) tp[i]=inv_g[i]%Q*tp[i]%Q;
NTT(tp,N,-1);
for(i=0;i<len;i++) b[i]=(b[i]+tp[i])%Q*iv2%Q;
}
}
int main(){
int i,x;
n=rd(),m=rd();
for(i=1;i<=n;i++){
x=rd();
a[x]-=4;
if(a[x]<0) a[x]+=Q;
}
a[0]++;
for(n=2;n<=m;n<<=1);
g=3;
ig=pwr(3,Q-2);
iv2=pwr(2,Q-2);
SQR(a,b,n);
b[0]++;
INV(b,a,n);
for(i=0;i<=m;i++) a[i]=(2LL*a[i])%Q;
for(i=1;i<=m;i++) printf("%d
",a[i]);
return 0;
}