Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Print a blank line after each test case.
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9
2 2
2 1 3
1 2 2
Sample Output
Case 1: Yes
Case 2: Yes
解题思路:此题关键在于建图,跑最大流来判断是否已达到满流。题意:有n个任务,m台机器。每个任务有最早才能开始做的时间s_i,截止时间e_i,和完成该任务所需要的时间p_i。每个任务可以分段进行,但在同一天一台机器最多只能执行一个任务,问是否有可行的工作时间来完成所有任务。做法:建立一个超级源点s=0和一个超级汇点t=1001。源点s和每个任务i建边,边权为p_i,表示完成该任务需要的天数。对于每一个任务i,将编号i与编号n+[s_i~e_i]中每个编号建边,边权为1,表示将任务i分在第n+s_i天~第n+e_i天来完成,再将编号n+[s_i~e_i]与汇点t建边,边权为m,表示每一天(编号为n+j)最多同时运行m台机器来完成8天的任务单位量。但由于建的边数太多,用裸的Dinic跑最大流会TLE,怎么优化呢?采用当前弧优化:因为每次dfs找增广路的过程中都是从每个顶点指向的第1(编号为0)条边开始遍历的,而如果第1条边已达到满流,则会继续遍历第2条边....直至找到汇点,事实上这个递归的过程就造成了很多不必要浪费的时间,所以在dfs的过程中应标记一下每个顶点v当前能到达的第curfir[v]条边,说明顶点v的第0条边~第curfir[v]-1条边都已达满流或者流不到汇点,这样时间复杂度就大大降低了。注意:每次bfs给图重新分层次时,需要清空当前弧数组cirfir[],表示初始时从每个顶点v的第1(编号为0)条边开始遍历。
AC代码(124ms):
1 #include<bits/stdc++.h> 2 using namespace std; 3 const int INF=0x3f3f3f3f; 4 const int maxn=1005; 5 struct edge{ int to,cap;size_t rev; 6 edge(int _to, int _cap, size_t _rev):to(_to),cap(_cap),rev(_rev){} 7 }; 8 int T,n,m,p,s,e,tot,level[maxn];queue<int> que;vector<edge> G[maxn];size_t curfir[maxn];//当前弧数组 9 void add_edge(int from,int to,int cap){ 10 G[from].push_back(edge(to,cap,G[to].size())); 11 G[to].push_back(edge(from,0,G[from].size()-1)); 12 } 13 bool bfs(int s,int t){ 14 memset(level,-1,sizeof(level)); 15 while(!que.empty())que.pop(); 16 level[s]=0; 17 que.push(s); 18 while(!que.empty()){ 19 int v=que.front();que.pop(); 20 for(size_t i=0;i<G[v].size();++i){ 21 edge &e=G[v][i]; 22 if(e.cap>0&&level[e.to]<0){ 23 level[e.to]=level[v]+1; 24 que.push(e.to); 25 } 26 } 27 } 28 return level[t]<0?false:true; 29 } 30 int dfs(int v,int t,int f){ 31 if(v==t)return f; 32 for(size_t &i=curfir[v];i<G[v].size();++i){//从v的第curfir[v]条边开始,采用引用的方法,同时改变本身的值 33 //因为节点v的第0~curfir[v]-1条边已达到满流了,所以无需重新遍历--->核心优化 34 edge &e=G[v][i]; 35 if(e.cap>0&&(level[v]+1==level[e.to])){ 36 int d=dfs(e.to,t,min(f,e.cap)); 37 if(d>0){ 38 e.cap-=d; 39 G[e.to][e.rev].cap+=d; 40 return d; 41 } 42 } 43 } 44 return 0; 45 } 46 int max_flow(int s,int t){ 47 int f,flow=0; 48 while(bfs(s,t)){ 49 memset(curfir,0,sizeof(curfir));//重新将图分层之后就清空数组,从第0条边开始遍历 50 while((f=dfs(s,t,INF))>0)flow+=f; 51 } 52 return flow; 53 } 54 int main(){ 55 while(~scanf("%d",&T)){ 56 for(int cas=1;cas<=T;++cas){ 57 scanf("%d%d",&n,&m);tot=0; 58 for(int i=0;i<maxn;++i)G[i].clear(); 59 for(int i=1;i<=500;++i)add_edge(500+i,1001,m); 60 for(int i=1;i<=n;++i){ 61 scanf("%d%d%d",&p,&s,&e); 62 add_edge(0,i,p);tot+=p;//tot为总时间 63 for(int j=s;j<=e;++j)add_edge(i,500+j,1); 64 } 65 printf("Case %d: %s ",cas,max_flow(0,1001)==tot?"Yes":"No"); 66 } 67 } 68 return 0; 69 }