• hdu 3572 Task Schedule(当前弧优化Dinic算法)


    Problem Description

    Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days. 
    Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.

    Input

    On the first line comes an integer T(T<=20), indicating the number of test cases.
    You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.

    Output

    For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
    Print a blank line after each test case.

    Sample Input

    2
    4 3
    1 3 5
    1 1 4
    2 3 7
    3 5 9
     
    2 2
    2 1 3
    1 2 2

    Sample Output

    Case 1: Yes
     
    Case 2: Yes
    解题思路:此题关键在于建图,跑最大流来判断是否已达到满流。题意:有n个任务,m台机器。每个任务有最早才能开始做的时间s_i,截止时间e_i,和完成该任务所需要的时间p_i。每个任务可以分段进行,但在同一天一台机器最多只能执行一个任务,问是否有可行的工作时间来完成所有任务。做法:建立一个超级源点s=0和一个超级汇点t=1001。源点s和每个任务i建边,边权为p_i,表示完成该任务需要的天数。对于每一个任务i,将编号i与编号n+[s_i~e_i]中每个编号建边,边权为1,表示将任务i分在第n+s_i天~第n+e_i天来完成,再将编号n+[s_i~e_i]与汇点t建边,边权为m,表示每一天(编号为n+j)最多同时运行m台机器来完成8天的任务单位量。但由于建的边数太多,用裸的Dinic跑最大流会TLE,怎么优化呢?采用当前弧优化:因为每次dfs找增广路的过程中都是从每个顶点指向的第1(编号为0)条边开始遍历的,而如果第1条边已达到满流,则会继续遍历第2条边....直至找到汇点,事实上这个递归的过程就造成了很多不必要浪费的时间,所以在dfs的过程中应标记一下每个顶点v当前能到达的第curfir[v]条边,说明顶点v的第0条边~第curfir[v]-1条边都已达满流或者流不到汇点,这样时间复杂度就大大降低了。注意:每次bfs给图重新分层次时,需要清空当前弧数组cirfir[],表示初始时从每个顶点v的第1(编号为0)条边开始遍历。
    AC代码(124ms):
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int INF=0x3f3f3f3f;
     4 const int maxn=1005;
     5 struct edge{ int to,cap;size_t rev;
     6     edge(int _to, int _cap, size_t _rev):to(_to),cap(_cap),rev(_rev){}
     7 };
     8 int T,n,m,p,s,e,tot,level[maxn];queue<int> que;vector<edge> G[maxn];size_t curfir[maxn];//当前弧数组
     9 void add_edge(int from,int to,int cap){
    10     G[from].push_back(edge(to,cap,G[to].size()));
    11     G[to].push_back(edge(from,0,G[from].size()-1));
    12 }
    13 bool bfs(int s,int t){
    14     memset(level,-1,sizeof(level));
    15     while(!que.empty())que.pop();
    16     level[s]=0;
    17     que.push(s);
    18     while(!que.empty()){
    19         int v=que.front();que.pop();
    20         for(size_t i=0;i<G[v].size();++i){
    21             edge &e=G[v][i];
    22             if(e.cap>0&&level[e.to]<0){
    23                 level[e.to]=level[v]+1;
    24                 que.push(e.to);
    25             }
    26         }
    27     }
    28     return level[t]<0?false:true;
    29 }
    30 int dfs(int v,int t,int f){
    31     if(v==t)return f;
    32     for(size_t &i=curfir[v];i<G[v].size();++i){//从v的第curfir[v]条边开始,采用引用的方法,同时改变本身的值
    33         //因为节点v的第0~curfir[v]-1条边已达到满流了,所以无需重新遍历--->核心优化
    34         edge &e=G[v][i];
    35         if(e.cap>0&&(level[v]+1==level[e.to])){
    36             int d=dfs(e.to,t,min(f,e.cap));
    37             if(d>0){
    38                 e.cap-=d;
    39                 G[e.to][e.rev].cap+=d;
    40                 return d;
    41             }
    42         }
    43     }
    44     return 0;
    45 }
    46 int max_flow(int s,int t){
    47     int f,flow=0;
    48     while(bfs(s,t)){
    49         memset(curfir,0,sizeof(curfir));//重新将图分层之后就清空数组,从第0条边开始遍历
    50         while((f=dfs(s,t,INF))>0)flow+=f;
    51     }
    52     return flow;
    53 }
    54 int main(){
    55     while(~scanf("%d",&T)){
    56         for(int cas=1;cas<=T;++cas){
    57             scanf("%d%d",&n,&m);tot=0;
    58             for(int i=0;i<maxn;++i)G[i].clear();
    59             for(int i=1;i<=500;++i)add_edge(500+i,1001,m);
    60             for(int i=1;i<=n;++i){
    61                 scanf("%d%d%d",&p,&s,&e);
    62                 add_edge(0,i,p);tot+=p;//tot为总时间
    63                 for(int j=s;j<=e;++j)add_edge(i,500+j,1);
    64             }
    65             printf("Case %d: %s
    
    ",cas,max_flow(0,1001)==tot?"Yes":"No");
    66         }
    67     }
    68     return 0;
    69 }
  • 相关阅读:
    bzoj5178 [Jsoi2011]棒棒糖 主席树+线段树二分
    bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心
    bzoj3123 [Sdoi2013]森林 树上主席树+启发式合并
    bzoj4448 [Scoi2015]情报传递 主席树+树上差分
    bzoj4399 魔法少女LJJ 线段树合并+线段树二分+并查集
    CF1009F Dominant Indices 长链剖分
    bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP
    bzoj4009 [HNOI2015]接水果 整体二分+扫描线+树状数组+dfs序
    bzoj4940 [Ynoi2016]这是我自己的发明 莫队+dfs序
    bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队
  • 原文地址:https://www.cnblogs.com/acgoto/p/9861246.html
Copyright © 2020-2023  润新知