方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0。再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x、z有关,并且M=min(x,z)(x,z分别为N!的中因子2,因子5的个数)。因为N!中每两个数字就有一个数为2的倍数,即每5个数中(最后一个数为5的倍数)至少有2个数为2的倍数,而只有最后一个数为5的倍数,所以可知因子为2的个数一定不小于因子为5的个数(x>=z),即M=z。因此,我们只需统计N!中因子为5的个数即可!时间复杂度为O(nlog5n),其中n=N/5。
1 #include<bits/stdc++.h> 2 using namespace std; 3 int main(){ 4 int n,cnt,tmp; 5 while(cin>>n){ 6 cnt=0; 7 for(int i=5;i<=n;i+=5){//n!内i只有为5的倍数才可产生因子5 8 tmp=i; 9 while(tmp%5==0)cnt++,tmp/=5;//累加因子5的个数 10 } 11 cout<<cnt<<endl; 12 } 13 return 0; 14 }
方法二:如果N是109呢,用方法一肯定会超时。此时有一条公式可以快速地求出N!尾数为0的个数:M=[N/5]+[N/52]+[N/53]+...公式的意思就是不大于N且为5的倍数的每个数各贡献一个因子5加上不大于N且为52的倍数的每个数各贡献一个因子5加上...,将所有结果累加即为N!中因子5的个数。时间复杂度为O(log5N)。举个例子:当N=25时,N!内为5的倍数的数有5,10,15,20,25,对应数字包含因子为5的个数为1,1,1,1,2,(很明显通过法一可知25!尾数有6个0)套一下法二的公式:N内为5的倍数的个数有N/5=25/5=5个,即前面5个数各贡献一个因子5,继续累加:N/52=25/25=1个,即最后一个数25也贡献一个因子5,所以25!尾数有6个0,因此验证了法二的正确性。其实这里用到了一个数论知识:若p是质数,p<=n,则N!是p的倍数,设px为p在N!内的最高次幂,则x=[N/p]+[N/p2]+[N/p3]+...,并且有[N/(p*p)]=[[N/p]/p]。结合法一可知p=5,即只需求N!内因子为5的个数!
1 #include<bits/stdc++.h> 2 using namespace std; 3 int main(){ 4 int n,cnt; 5 while(cin>>n){ 6 cnt=0; 7 while(n>4)cnt+=n/5,n/=5; 8 cout<<cnt<<endl; 9 } 10 return 0; 11 }