• hdu 4704 Sum(扩展欧拉定理)


    Problem Description

    Sample Input

    2

    Sample Output

    2
    Hint
    1. For N = 2, S(1) = S(2) = 1.
    2. The input file consists of multiple test cases.
    解题思路:由于指数很大,要用到欧拉降幂公式,即扩展欧拉定理:$ a^n equiv a^{n ; mod ;varphi(p)} (mod ; p)$,其中$gcd(a, p) = 1$。题目的意思就是给出一个N,N∈[1,10^100000],求(S1+S2+...+SN)mod(10^9+7),其中Si表示i个数相加总和为N组成的方案数,那么原问题就可以转换成N=x1+x2+x3+...+xN,其中xi看作是由m个1(m∈[0,N])相加得到的,则SN就有N个1(xi=1(i∈[1,N]))相加得到,所以也就是求N个1分组的方案数(小球隔板问题)。将N个1排成一行,有N-1个空,每个空可以选择插入或者不插入一块隔板,则一共有2^(N-1)种方案数。由于N很大,直接套整数快速幂模板肯定是不行的,又因为10^9+7是一个质数,因此是否可以通过费马小定理来实现对指数N-1先取个模,然后再套一下整数快速幂取模运算?我们来推导一下公式:根据费马小定理公式:a(p-1)≡1(mod p),其中p是质数,p不能整除a。假设n=n%(p-1)+t*(p-1),其中t=n/(p-1),则2n%p=2n%(p-1)%p*(2t)(p-1)%p,由于gcd(2t,p)=1,即(2t)(p-1)≡1(mod p),所以最终推得的公式为2n%p=2n%(p-1)%p。用字符串读取N,同时取模p-1,因为(N-1)%(p-1)=N%(p-1)-1,所以将N模p-1得到的结果N'再计算一下2(N'-1)%p即可。
    AC代码:
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const LL mod=1e9+7;
     5 const int maxn=1e5+5;//N最大有10^5位
     6 char str[maxn];
     7 LL mod_power(LL a,LL b){//整数快速幂
     8     LL ans=1;
     9     while(b){
    10         if(b&1)ans=ans*a%mod;
    11         a=a*a%mod;
    12         b>>=1;
    13     }
    14     return ans;
    15 }
    16 int main(){
    17     while(cin>>str){
    18         LL N=0;
    19         for(int i=0;str[i]!='';++i)
    20             N=(10*N+(str[i]-'0'))%(mod-1);//先处理N'=N%(p-1)
    21         cout<<mod_power(2,N-1)<<endl;//再求2^(N'-1)%p即可
    22     }
    23     return 0;
    24 }
  • 相关阅读:
    第44月第9天 iOS开发-illegal text-relocation错误解决
    第44月第8天 高可用 zookeeper
    第44月第7天 bitcode 生成各机型的包
    第44月第6天 iOS静态库冲突 framework瘦身
    第44月第5天 VMware centos7并配置网络 git-for-windows
    第44月第2天 解决MySQL报错:1 of ORDER BY clause is not in GROUP BY clause and contains nonaggregated column 'informat
    第43月第29天 rtp分包
    第43月第28天 libyuv裁剪
    label不换行的问题
    解决scrollview不滚动
  • 原文地址:https://www.cnblogs.com/acgoto/p/9431732.html
Copyright © 2020-2023  润新知