Problem Description
春节回家 你能做几天好孩子吗
寒假里尝试做做下面的事情吧
陪妈妈逛一次菜场
悄悄给爸爸买个小礼物
主动地 强烈地 要求洗一次碗
某一天早起 给爸妈用心地做回早餐
如果愿意 你还可以和爸妈说
咱们玩个小游戏吧 ACM课上学的呢~
下面是一个二人小游戏:桌子上有M堆扑克牌;每堆牌的数量分别为Ni(i=1…M);两人轮流进行;每走一步可以任意选择一堆并取走其中的任意张牌;桌子上的扑克全部取光,则游戏结束;最后一次取牌的人为胜者。
现在我们不想研究到底先手为胜还是为负,我只想问大家:
——“先手的人如果想赢,第一步有几种选择呢?”
Input
Output
Sample Input
Sample Output
如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)(解题重点)即可。
例1:(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。
例2:(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品就形成了奇异局势(55,81,102)。
例3:(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,45,48)。
例4:我们来实际进行一盘比赛看看:
甲7,8,9)->(1,8,9)奇异局势
乙1,8,9)->(1,8,4)
甲1,8,4)->(1,5,4)奇异局势
乙1,5,4)->(1,4,4)
甲1,4,4)->(0,4,4)奇异局势
乙0,4,4)->(0,4,2)
甲0.4,2)->(0,2,2)奇异局势
乙0,2,2)->(0,2,1)
甲0,2,1)->(0,1,1)奇异局势
乙0,1,1)->(0,1,0)
甲0,1,0)->(0,0,0)奇异局势
甲胜。结论:①a1^a2^......^an==0,则后手必赢;②若a1^a2^...^an!=0,一定存在某个合法的移动,将ai改变成ai'后满足a1^a2^...^ai'^...^an=0。若S=a1^a2^...^an,则一定存在某个ai,使得(S^ai<ai)一定成立,那么我们可以将ai改变成ai'=ai^k,则a1^a2^...^ai'^...^an=a1^a2^...^an^S=0,局面转化成①状态,则此时先手必赢。
证明可以参考一下这篇博文:尼姆博弈(Nimm's Game)
1 #include<bits/stdc++.h> 2 using namespace std; 3 const int maxn = 105; 4 int m,ans,cnt,a[maxn]; 5 int main() 6 { 7 while(cin>>m && m){ 8 ans=cnt=0; 9 for(int i=0;i<m;++i){ 10 cin>>a[i]; 11 ans^=a[i]; 12 }//把所有数都异或起来,存在ans里面 13 for(int i=0;i<m;++i){ 14 if((ans^a[i])<a[i]) 15 cnt++; 16 }//这里把ans跟a[i]异或,可以得到出a[i]外所有数异或的结果。此结果若小于a[i],则只要在a[i]中取出一定的值,就能形成奇异局势,先手将必赢 17 cout<<cnt<<endl; 18 } 19 return 0; 20 }