• kuangbin Prime Path


    F - Prime Path


    The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
    — It is a matter of security to change such things every now and then, to keep the enemy in the dark. 
    — But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! 
    — I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. 
    — No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! 
    — I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. 
    — Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime. 

    Now, the minister of finance, who had been eavesdropping, intervened. 
    — No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. 
    — Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you? 
    — In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above. 
    1033 
    1733 
    3733 
    3739 
    3779 
    8779 
    8179
    The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
    Input
    One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
    Output
    One line for each case, either with a number stating the minimal cost or containing the word Impossible.
    Sample Input
    3
    1033 8179
    1373 8017
    1033 1033
    Sample Output
    6
    7
    0
     

    题意:

    给两个素数 num1 num2  要求将num1变成num2  ,每次变换只能变一个数字,花费为一,变换后的数字依旧为素数,求最小花费。

    思路:欧拉筛之后,bfs 分别跑个十百千位上的数字,个位数字一定为奇数,千位数字必定不为零。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <functional>
    #include <iostream>
    #include <queue>
    using namespace std;
    const int maxn=1e6+10;
    int prime[maxn],pn;
    bool noot[maxn];
    void init(){
        pn=0;
        memset(noot,false,sizeof(noot));
        noot[1]=1;
        for (int i=2;i<maxn;i++){
            if(!noot[i])prime[pn++]=i;
            for (int j=0;j<pn&&i*prime[j]<maxn;j++){
                noot[i*prime[j]]=1;
                if(i%prime[j]==0) break;
            }
        }
    }
    struct node{
        int num,step;
    }now,nxt;
    int num1,num2;
    int bfs(int x){
        bool vis[maxn];
        memset(vis,false,sizeof(vis));
        vis[x]=1;
        now.num=x;
        now.step=0;
        queue<node>q;
        q.push(now);
        while(!q.empty()){
            now=q.front();
            q.pop();
            if(now.num==num2) return now.step;
            for (int i=1;i<=9;i+=2){
                int num=now.num/10*10+i;
                if(!noot[num]&&!vis[num]){
                    nxt.num=num;
                    nxt.step=now.step+1;
                    vis[num]=1;
                    q.push(nxt);
                }
            }//个位
            for (int i=0;i<=9;i++){
                int num=now.num%10+(now.num/100*10+i)*10;
                if(!noot[num]&&!vis[num]){
                    nxt.num=num;
                    nxt.step=now.step+1;
                    vis[num]=1;
                    q.push(nxt);
                }
            }//十位;
            for (int i=0;i<=9;i++){
                int num=now.num%100+(now.num/1000*10+i)*100;
                if(!noot[num]&&!vis[num]){
                    nxt.num=num;
                    nxt.step=now.step+1;
                    vis[num]=1;
                    q.push(nxt);
                }
            }
            for (int i=1;i<=9;i++){
                int num=now.num%1000+i*1000;
                if(!noot[num]&&!vis[num]){
                    nxt.num=num;
                    nxt.step=now.step+1;
                    vis[num]=1;
                    q.push(nxt);
                }
            }
        }
        return -1;
    }
    int main(){
        init();
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&num1,&num2);
            int ans=bfs(num1);
            if(ans>=0) printf("%d
    ",ans);
            else printf("Impossible
    ");
        }
        return 0;
    }
    

  • 相关阅读:
    我的软考之路(五)——数据结构与算法(3)之图
    我的软考之路(四)——数据结构与算法(2)之树与二叉树
    程序员学习资料分享---爱分享的程序员(新浪微博)
    HIT CS科班对计算机专业knowledge的compilation
    我的软考之路(三)——数据结构与算法(1)之线性
    我的软考之路(二)——J2SE宏观总结
    python进阶七_文件操作(三)
    python进阶七_文件操作(二)
    python进阶七_文件操作(一)
    python进阶六_封装与继承
  • 原文地址:https://www.cnblogs.com/acerkoo/p/9490337.html
Copyright © 2020-2023  润新知