• Til the Cows Come Home


    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.Input* Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.Output* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.Sample Input
    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100
    Sample Output
    90
    HintINPUT DETAILS: 

    There are five landmarks. 

    OUTPUT DETAILS: 

    Bessie can get home by following trails 4, 3, 2, and 1。    


    最短路裸题。


    #include <cstdio>
    #include <algorithm>
    #include <functional>
    #include <cstring>
    #include <queue>
    using namespace std;
    const int maxn=10100,inf=0x7fffffff;
    struct node{
        int u,v,w,next;
    }edge[maxn];
    int pre[maxn],dis[maxn],n,e,cnt;
    bool vis[maxn];
    void init(){
        memset(pre,-1,sizeof(pre));
        cnt=0;
    }
    void add(int u,int v,int c){
        edge[cnt].u=u;
        edge[cnt].w=c;
        edge[cnt].v=v;
        edge[cnt].next=pre[u];
        pre[u]=cnt++;
    }
    void spfa(int s){
        memset(vis,false,sizeof(vis));
        for (int i=0;i<=n;i++) dis[i]=inf;
        dis[s]=0,vis[s]=1;
        queue<int>q;
        q.push(s);
        while(!q.empty()){
            int u=q.front();
            q.pop();
            vis[u]=false;
            for (int i=pre[u]; i!=-1; i=edge[i].next){
                int v=edge[i].v,w=edge[i].w;
                if(dis[v]>dis[u]+w){
                    dis[v]=dis[u]+w;
                    if(!vis[v]){
                        vis[v]=1;
                        q.push(v);
                    }
                }
            }
        }
    }
    int main(){
        int u,v,w;
        while(~scanf("%d%d",&e,&n)){
            init();
            while(e--){
                scanf("%d%d%d",&u,&v,&w);
                add(u,v,w),add(v,u,w);
            }
            spfa(1);
            printf("%d
    ",dis[n]);
        }
        return 0;
    }
    

  • 相关阅读:
    使用数字进行字符遍历
    注意:C++中double的表示是有误差的
    ER模型到关系模型的转换规则
    SQL中查询优化的主要策略
    分解成3NF保持函数依赖且为无损连接的算法
    函数依赖集闭包、属性集闭包、超键、候选键和最小函数依赖集的求法。
    分解成3NF的保持函数依赖的分解算法:
    模式分解是否为无损连接的判断方法
    字符串处理技巧
    sort+结构体实现二级排序
  • 原文地址:https://www.cnblogs.com/acerkoo/p/9490324.html
Copyright © 2020-2023  润新知