• 2019杭电多校十 1011 Make Rounddog Happy(rmq + 分治)


    题意

    有一个大小为 (n ,(n leq 3e5)) 的序列,序列中的每一个数 (a_i) 满足(1 leq a_i leq n)

    现定义 good subarray:对于一段区间(a_l, a_{l+1}, dots, a_r),满足区间内无重复元素并且 (max{a_l, a_{l+1}, dots, a_r} - (r-l+1) leq k)

    求序列a中的 good subarray的数量。

    思路

    rmq + 分治的套路题。

    针对最大值,可通过rmq预处理,待需要时可通过(O(log))的复杂度查询区间最大值的位置。

    对于每个位置,可通过dp (瞎搞),求出与其无重复元素的左右两端。

    接下来就可以通过对最大值分治。

    分治过程中对于区间 ([l, r]) 可通过rmq查询 快速得到最大值的位置 (p) ,在(p-l、 r-p) 两段中选择一个较小的暴力枚举合法区间数量。

    通过分治,每个点的期望遍历次数为(log) 次,整体代码期望复杂度为(O(nlog))

    Code

    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 3e5+10;
    
    ll ans;
    int a[maxn], st[maxn][30];
    int vis[maxn], _l[maxn], _r[maxn];
    int T, n, k;
    
    int query(int l, int r) {
        int len = r-l+1, d=0;
        while((1<<d+1)<=len) ++d; int p=1<<d;
        if(a[st[l][d]]>a[st[r-p+1][d]]) return st[l][d];
        return st[r-p+1][d];
    }
    
    void solve(int l, int r) {
        if(l > r) return;
        int p = query(l, r);
        solve(l, p-1); solve(p+1,r);
        int len = a[p]-k;
        if(p-l < r-p) {
            for (int i=p; i>=l; --i) {
                int L = max(p, i+len-1);
                int R = min(r, _r[i]);
                if(R>=L) ans += R-L+1;
            }
        } else {
            for (int i=p; i<=r; ++i) {
                int L = max(_l[i], l);
                int R = min(i-len+1, p);
                if(R>=L) ans += R-L+1;
            }
        }
    }
    
    int main() {
        scanf("%d", &T);
        while(T--) {
            scanf("%d%d", &n, &k);
            for (int i=1; i<=n; ++i)
                scanf("%d", a+i), st[i][0]=i;
            for (int j=1; j<=20; ++j) {
                int p = 1<<j-1, l=1<<j;
                for (int i=1; i+l-1<=n; ++i) {
                    if(a[st[i][j-1]] > a[st[i+p][j-1]]) st[i][j] = st[i][j-1];
                    else st[i][j] = st[i+p][j-1];
                }
            }
    
            for (int i=1; i<=n; ++i) vis[i]=n+1;
            for (int i=n; i>=1; --i) {
                _r[i]=vis[a[i]]-1;
                vis[a[i]]=i;
            }
            for (int i=n-1; i>=1; --i) _r[i] = min(_r[i], _r[i+1]);
    
            for (int i=1; i<=n; ++i) vis[i]=0;
            for (int i=1; i<=n; ++i) {
                _l[i]=vis[a[i]]+1;
                vis[a[i]]=i;
            }
            for (int i=2; i<=n; ++i) _l[i] = max(_l[i-1], _l[i]);
    
            ans = 0;
            solve(1, n);
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
    /*
    2
    5 3
    2 3 2 2 5
    10 4
    1 5 4 3 6 2 10 8 4 5
    */
    

    总结

    刚开始忽略掉了区间中无重复值这个条件,满脑子都是单调栈+瞎搞,等看到这个条件时已经神志不清了,再做题时,需要读好题目中的要求,头脑清醒的分析抽象题目、理清思路与其时间空间以及手敲的复杂度之后再上机,避免既浪费时间,又影响心态。

  • 相关阅读:
    Spark2 Dataset DataFrame空值null,NaN判断和处理
    Spark2 文件处理和jar包执行
    &与&&, |与||区别
    Scala实现乘法口诀
    Hive desc
    Hive FUNCTIONS函数
    Hive show
    MySQL行列转换拼接
    MySQL字符串连接
    SQLServer之索引简介
  • 原文地址:https://www.cnblogs.com/acerkoo/p/11397407.html
Copyright © 2020-2023  润新知