• 【翻译十八】java-并发之锁对象


    Lock Objects

    Synchronized code relies on a simple kind of reentrant lock. This kind of lock is easy to use, but has many limitations. More sophisticated locking idioms are supported by the java.util.concurrent.locks package. We won't examine this package in detail, but instead will focus on its most basic interface, Lock.

    Lock objects work very much like the implicit locks used by synchronized code. As with implicit locks, only one thread can own a Lock object at a time. Lock objects also support a wait/notify mechanism, through their associated Condition objects.

    The biggest advantage of Lock objects over implicit locks is their ability to back out of an attempt to acquire a lock. The tryLock method backs out if the lock is not available immediately or before a timeout expires (if specified). ThelockInterruptibly method backs out if another thread sends an interrupt before the lock is acquired.

    Let's use Lock objects to solve the deadlock problem we saw in Liveness. Alphonse and Gaston have trained themselves to notice when a friend is about to bow. We model this improvement by requiring that our Friend objects must acquire locks for both participants before proceeding with the bow. Here is the source code for the improved model, Safelock. To demonstrate the versatility of this idiom, we assume that Alphonse and Gaston are so infatuated with their newfound ability to bow safely that they can't stop bowing to each other:

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    import java.util.Random;
    
    public class Safelock {
        static class Friend {
            private final String name;
            private final Lock lock = new ReentrantLock();
    
            public Friend(String name) {
                this.name = name;
            }
    
            public String getName() {
                return this.name;
            }
    
            public boolean impendingBow(Friend bower) {
                Boolean myLock = false;
                Boolean yourLock = false;
                try {
                    myLock = lock.tryLock();
                    yourLock = bower.lock.tryLock();
                } finally {
                    if (! (myLock && yourLock)) {
                        if (myLock) {
                            lock.unlock();
                        }
                        if (yourLock) {
                            bower.lock.unlock();
                        }
                    }
                }
                return myLock && yourLock;
            }
                
            public void bow(Friend bower) {
                if (impendingBow(bower)) {
                    try {
                        System.out.format("%s: %s has"
                            + " bowed to me!%n", 
                            this.name, bower.getName());
                        bower.bowBack(this);
                    } finally {
                        lock.unlock();
                        bower.lock.unlock();
                    }
                } else {
                    System.out.format("%s: %s started"
                        + " to bow to me, but saw that"
                        + " I was already bowing to"
                        + " him.%n",
                        this.name, bower.getName());
                }
            }
    
            public void bowBack(Friend bower) {
                System.out.format("%s: %s has" +
                    " bowed back to me!%n",
                    this.name, bower.getName());
            }
        }
    
        static class BowLoop implements Runnable {
            private Friend bower;
            private Friend bowee;
    
            public BowLoop(Friend bower, Friend bowee) {
                this.bower = bower;
                this.bowee = bowee;
            }
        
            public void run() {
                Random random = new Random();
                for (;;) {
                    try {
                        Thread.sleep(random.nextInt(10));
                    } catch (InterruptedException e) {}
                    bowee.bow(bower);
                }
            }
        }
                
    
        public static void main(String[] args) {
            final Friend alphonse =
                new Friend("Alphonse");
            final Friend gaston =
                new Friend("Gaston");
            new Thread(new BowLoop(alphonse, gaston)).start();
            new Thread(new BowLoop(gaston, alphonse)).start();
        }
    }
    
  • 相关阅读:
    多阶段构建Docker镜像
    Docker容器跨主机通信
    数说海南——简单分析海南各市县近六年人口吸引力情况
    数说海南——透过几组数据简单分析近十年海南人口情况
    Kubernetes1.7—DNS安装
    BP神经网络
    Centos7——NFS(Network File System)服务
    Kafka中时间轮分析与Java实现
    Centos安装完成后,ifconfig:command not found
    Oracle VM VirtualBox虚拟机安装Centos
  • 原文地址:https://www.cnblogs.com/accipiter/p/3286263.html
Copyright © 2020-2023  润新知