House Robber I/II/III
这题代表了单向线性dp的基本pattern: build local best value at each element and track the global optimal. 这题的要点是local是前k个房间的最优解,这个解不一定要选第k个房间。这个local解是比较k-1的optimal和k-2 optimal + current value。之所以不以必选第k个房间作local是因为有可能最优解有连续2或多个房间不选,比如100,1,1,100
III:
- binary tree和array的思路是一样的,对于当前root,需要前面两层的结果:left/right subtree的max和left/right的子树的max
- 同时,和array一样,返回的值不是必然包括root的
- 在计算left/right子树的max时,只需要sum,因为root对于两层后只关心sum
class Solution(object):
def rob(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
pre_2 = nums[0]
if len(nums)<2: return pre_2
pre_1 = max(nums[0],nums[1])
cur = pre_1
for i in range(2, len(nums)):
cur = max(pre_1, pre_2+nums[i])
pre_2=pre_1
pre_1=cur
return cur
class Solution(object):
def rob(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
def robOneDir(nums):
pre_1 = nums[0]
pre_2 = max(nums[0], nums[1])
for i in range(2, len(nums)):
cur = max(pre_2, pre_1+nums[i])
pre_1=pre_2
pre_2=cur
return pre_2
if not nums: return 0
if len(nums)<2: return nums[0]
if len(nums)==2: return max(nums[0], nums[1])
nums1,nums2=nums[0:-1],nums[1:]
return max(robOneDir(nums1), robOneDir(nums2))
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def rob(self, root):
"""
:type root: TreeNode
:rtype: int
"""
def robRec(root):
pre_left_1,pre_left_2,pre_right_1,pre_right_2=0,0,0,0
if root.left:
pre_left_1, pre_left_2 = robRec(root.left)
if root.right:
pre_right_1, pre_right_2 = robRec(root.right)
cur = max(pre_left_2+root.val+pre_right_2, pre_left_1+pre_right_1)
return cur, pre_left_1+pre_right_1
if not root: return 0
maxValue, noUse = robRec(root)
return maxValue