• 边工作边刷题:70天一遍leetcode: day 1


    (今日完成:Two Sum, Add Two Numbers, Longest Substring Without Repeating Characters, Median of Two Sorted Arrays, Longest Palindromic Substring)

    恼人的median of two sorted arrays

    前几年google的必考题,现在考的比较少了,思路就是binary search,具体来说,

    • 如果是一个array,因为是sorted,找到第k个元素是trivial。如果2个array,可以把一个array B作为pivot而搜索另一个array A是否有第k个。因为已知array A中第ith,找array B中(k-i)th也是trivial的。
    • 如果在array A中没找到,再交换两个array重新搜索。
    • 这题恶心在corner case。找到的条件是A的第ith在B中k-1-i-1和k-1-i之间。另外两种情况是<B[k-1-i-1]和>B[k-1-i]。具体见code,建议大致明白三种情况后死记binary search的条件,反正过不久就忘了,呵呵。

    图示两个数组的个数计算

    google曾经的面试题是这个的简单扩展:如果给定两个数组中的某一个数,找到离这个数第k近的数。直接用binary search找到这个数后确定次序k’,然后用上面的方法找到第(k+k’)th

    class Solution(object):
        def findMedianSortedArrays(self, nums1, nums2):
            """
            :type nums1: List[int]
            :type nums2: List[int]
            :rtype: float
            """
            def median(nums1, nums2, low, high, k):
                if low>high:
                    return median(nums2, nums1, 0, len(nums2)-1, k)
                
                i = low+(high-low)/2
                j = k-i-1-1
                n = len(nums2)
                
                if (j<0 or (j<n and nums1[i]>=nums2[j])) and (j>=n-1 or (j+1>=0 and nums1[i]<=nums2[j+1])):
                    return nums1[i]
                elif j<0 or (j+1<n and nums1[i]>nums2[j+1]):
                    return median(nums1, nums2, low, i-1, k)
                else:
                    return median(nums1, nums2, i+1, high, k)
                    
            n1,n2 = len(nums1),len(nums2)
            if (n1+n2) & 1 == 1:
                return median(nums1, nums2, 0, n1-1, (n1+n2)/2+1)/1.0
            else:
                return (median(nums1, nums2, 0, n1-1, (n1+n2)/2)+median(nums1, nums2, 0, n1-1, (n1+n2)/2+1))/2.0
    

    这题还有个分布式的版本: n个data分布到s台机器上去做
    https://www.quora.com/Distributed-Algorithms/What-is-the-distributed-algorithm-to-determine-the-median-of-arrays-of-integers-located-on-different-computers

    • 就是master/slave的结构。
    • analysis:
      • 基本framework: 两个元素:单机上的量(O(n/s)),多少轮(O(log(n/s)):因为单机每次减半,那么这么多轮后就空了)。
        • 多少台机器不是考虑因素:如果s台机器并行,假设同时进行,这样和一台的时间相同。
        • 注意每台机器上可以先排序,也可以不排。不排就是O(n/s)
      • 结果:O(n/s)+O(slog(n/s))
        • O(n/s):单机slave的总运算,superisingly,竟然和第一轮是同一量级的。主要利用1/(20)+1/(21)+...+1/(2^log(n/s))≈1。
        • O(slog(n/s)):master的总运算量:每次都是从s机器上得到一个数量值,然后轮数。
  • 相关阅读:
    Byteart Retail V3 全新的面向.NET与领域驱动设计的企业应用实践案例
    算法设计和数据结构学习堆排序
    OutputCacheProvider OutputCache的一点点认识
    使用beetle简单地实现高效的http基础服务
    The IoC container
    使用Visual Studio 2010进行UI自动化测试
    PortalBasic Java Web 应用开发框架 v2.6.1(源码、示例及文档)
    发展中的 CSS3
    C#数据结构与算法揭秘十
    Sql Server Profiler跟踪查询
  • 原文地址:https://www.cnblogs.com/absolute/p/5499585.html
Copyright © 2020-2023  润新知